IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2003011.html
   My bibliography  Save this paper

The moments of Log-ACD models

Author

Listed:
  • BAUWENS, Luc
  • GALLI, Fausto
  • GIOT, Pierre

Abstract

We provide existence conditions and analytical expressions of the moments of logarithmic autoregressive conditional duration (Log-ACD) models. We focus on the dispersion index and the autocorrelation function and compare them with those of ACD (Engle and Russell 1998) and SCD models. Using duration data for several stocks traded on the New York Stock Exchange, we compare the models in terms of their ability at fitting some stylized facts.

Suggested Citation

  • BAUWENS, Luc & GALLI, Fausto & GIOT, Pierre, 2003. "The moments of Log-ACD models," LIDAM Discussion Papers CORE 2003011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2003011
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2003.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    3. David Veredas & Juan Rodriguez-Poo & Antoni Espasa, 2001. "On the (Intradaily) Seasonality and Dynamics of a Financial Point Process : A Semiparametric Approach," Working Papers 2001-19, Center for Research in Economics and Statistics.
    4. He, Changli & Teräsvirta, Timo & Malmsten, Hans, 1999. "Fourth Moment Structure of a Family of First-Order Exponential GARCH Models," SSE/EFI Working Paper Series in Economics and Finance 345, Stockholm School of Economics.
    5. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    6. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    7. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    8. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.
    2. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    3. Simonsen, Ola, 2006. "The Impact of News Releases on Trade Durations in Stocks -Empirical Evidence from Sweden," Umeå Economic Studies 688, Umeå University, Department of Economics.
    4. Katarzyna Bień-Barkowska, 2011. "Multistate asymmetric ACD model: an application to order dynamics in the EUR/PLN spot market," NBP Working Papers 104, Narodowy Bank Polski.
    5. Francq, Christian & Wintenberger, Olivier & Zakoïan, Jean-Michel, 2013. "GARCH models without positivity constraints: Exponential or log GARCH?," Journal of Econometrics, Elsevier, vol. 177(1), pages 34-46.
    6. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    7. Feng, Yuanhua & Zhou, Chen, 2015. "Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD," International Journal of Forecasting, Elsevier, vol. 31(2), pages 349-363.
    8. Aerambamoorthy Thavaneswaran & Nalini Ravishanker & You Liang, 2015. "Generalized duration models and optimal estimation using estimating functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 129-156, February.
    9. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    10. Jan Beran & Yuanhua Feng & Sucharita Ghosh, 2015. "Modelling long-range dependence and trends in duration series: an approach based on EFARIMA and ESEMIFAR models," Statistical Papers, Springer, vol. 56(2), pages 431-451, May.
    11. Fabrizio Cipollini & Giampiero M Gallo & Alessandro Palandri, 2020. "Realized Variance Modeling: Decoupling Forecasting from Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 532-555.
    12. Helton Saulo & Narayanaswamy Balakrishnan & Roberto Vila, 2021. "On a quantile autoregressive conditional duration model applied to high-frequency financial data," Papers 2109.03844, arXiv.org.
    13. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Far Eastern Meetings 730, Econometric Society.
    14. Ola Simonsen, 2007. "An empirical model for durations in stocks," Annals of Finance, Springer, vol. 3(2), pages 241-255, March.
    15. Simonsen, Ola, 2006. "Stock Data, Trade Durations, And Limit Order Book Information," Umeå Economic Studies 689, Umeå University, Department of Economics.
    16. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    17. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    18. Wing Lon NG, 2004. "Duration and Order Type Clusters," Econometric Society 2004 Australasian Meetings 272, Econometric Society.
    19. Simonsen, Ola, 2005. "An Empirical Model for Durations in Stocks," Umeå Economic Studies 657, Umeå University, Department of Economics.
    20. Yuanhua Feng & Jan Beran & Sebastian Letmathe & Sucharita Ghosh, 2020. "Fractionally integrated Log-GARCH with application to value at risk and expected shortfall," Working Papers CIE 137, Paderborn University, CIE Center for International Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    2. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    3. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    4. Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
    5. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    6. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    7. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    8. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
    9. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    10. Hautsch, Nikolaus & Pohlmeier, Winfried, 2001. "Econometric Analysis of Financial Transaction Data: Pitfalls and Opportunities," CoFE Discussion Papers 01/05, University of Konstanz, Center of Finance and Econometrics (CoFE).
    11. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    12. Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
    13. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    14. Hujer, Reinhard & Vuletic, Sandra, 2007. "Econometric analysis of financial trade processes by discrete mixture duration models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 635-667, February.
    15. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    16. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    17. Bodnar, Taras & Hautsch, Nikolaus, 2016. "Dynamic conditional correlation multiplicative error processes," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 41-67.
    18. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    19. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    20. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    21. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.

    More about this item

    Keywords

    duration model; overdispersion; autocorrelation function; high frequency financial data;
    All these keywords.

    JEL classification:

    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2003011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.