IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v62y2009i23p15-28.html
   My bibliography  Save this article

IFOCAST: Methoden der ifo-Kurzfristprognose

Author

Listed:
  • Kai Carstensen
  • Steffen Henzel
  • Johannes Mayr
  • Klaus Wohlrabe

Abstract

Die Einschätzung und Vorhersage der gesamtwirtschaftlichen Situation im laufenden und im folgenden Quartal ist eine der zentralen Aufgaben der Konjunkturprognose. Das ifo Institut stützt sich bei seiner Kurzfristprognose des Bruttoinlandsprodukts auf den dreistufigen IFOCAST-Ansatz. In der ersten Stufe werden monatlich verfügbare Indikatoren, wie z.B. das ifo Geschäftsklima, extrapoliert und auf Quartalsebene aggregiert. Besonderes Augenmerk gilt dabei der Industrieproduktion, die mit Hilfe disaggregierter ifo-Umfragedaten fortgeschrieben wird. In einem zweiten Schritt wird die Bruttowertschöpfung der einzelnen Wirtschaftsbereiche mit Hilfe von Brückengleichungen prognostiziert. Im Rahmen eines Kombinationsansatzes wird eine Vielzahl von Modellen kombiniert, um dem Aspekt der Modellunsicherheit Rechnung zu tragen. In einem dritten Schritt werden die Quartalsprognosen einzelner Wirtschaftsbereiche anhand der ökonomischen Gewichte zur Prognose des Bruttoinlandsprodukts aggregiert. Es hat sich sowohl in der Prognoseliteratur als auch in der praktischen Umsetzung gezeigt, dass der gewählte Ansatz eine zuverlässige Kurzfristprognose liefert und flexibel genug ist, um auch extreme Entwicklungen gut aufzuzeigen. Zusätzlich zu diesem mehrstufigen Standardverfahren werden in diesem Artikel Mixed-Frequency-Modelle und Boosting-Algorithmen vorgestellt, welche den Standardansatz im Probebetrieb ergänzen.

Suggested Citation

  • Kai Carstensen & Steffen Henzel & Johannes Mayr & Klaus Wohlrabe, 2009. "IFOCAST: Methoden der ifo-Kurzfristprognose," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(23), pages 15-28, December.
  • Handle: RePEc:ces:ifosdt:v:62:y:2009:i:23:p:15-28
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/ifosd_2009_23_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Schumacher, Christian & Marcellino, Massimiliano & Kuzin, Vladimir, 2009. "Pooling versus model selection for nowcasting with many predictors: An application to German GDP," CEPR Discussion Papers 7197, C.E.P.R. Discussion Papers.
    3. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    4. Fritsche Ulrich & Stephan Sabine, 2002. "Leading Indicators of German Business Cycles. An Assessment of Properties / Frühindikatoren der deutschen Konjunktur. Eine Beurteilung ihrer Eigenschaften," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(3), pages 289-315, June.
    5. Franck Sédillot & Nigel Pain, 2003. "Indicator Models of Real GDP Growth in Selected OECD Countries," OECD Economics Department Working Papers 364, OECD Publishing.
    6. Jan-Egbert Sturm & Timo Wollmershäuser (ed.), 2005. "Ifo Survey Data in Business Cycle and Monetary Policy Analysis," Contributions to Economics, Springer, number 978-3-7908-1605-1, January.
    7. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    8. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    9. Jan Jacobs & Jan-Egbert Sturm, 2005. "Do Ifo Indicators Help Explain Revisions in German Industrial Production?," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 93-114, Springer.
    10. Projektgruppe Gemeinschaftsdiagnose, 2009. "Gemeinschaftsdiagnose Frühjahr 2009: Im Sog der Weltrezession," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(08), pages 03-81, April.
    11. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    12. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    13. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    14. Klaus Abberger & Klaus Wohlrabe, 2006. "Einige Prognoseeigenschaften des ifo Geschäftsklimas - Ein Überblick über die neuere wissenschaftliche Literatur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 59(22), pages 19-26, November.
    15. Stefan Mittnik & Peter Zadrozny, 2005. "Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 19-48, Springer.
    16. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    17. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    18. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    19. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    20. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    21. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    22. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    23. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    24. Hahn, Elke & Skudelny, Frauke, 2008. "Early estimates of euro area real GDP growth: a bottom up approach from the production side," Working Paper Series 975, European Central Bank.
    25. Wohlrabe, Klaus, 2009. "Forecasting with mixed-frequency time series models," Munich Dissertations in Economics 9681, University of Munich, Department of Economics.
    26. Peter Grasmann & Filip Keereman, 2001. "An indicator-based short-term forecast for quarterly GDP in the euro area," European Economy - Economic Papers 2008 - 2015 154, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    27. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    28. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(1), pages 108-124, April.
    29. Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
    30. Klaus Abberger & Wolfgang Nierhaus, 2008. "Die ifo Kapazitätsauslastung - ein gleichlaufender Indikator der deutschen Industriekonjunktur," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 61(16), pages 15-23, August.
    31. Hüfner Felix P. & Schröder Michael, 2002. "Prognosegehalt von ifo-Geschäftserwartungen und ZEW-Konjunkturerwartungen: Ein ökonometrischer Vergleich / Forecasting German industrial Production: An Econometric Comparison of ifo- and ZEW-Business ," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 222(3), pages 316-336, June.
    32. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    33. Clements, Michael P & Galvão, Ana Beatriz, 2008. "Macroeconomic Forecasting With Mixed-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 546-554.
    34. Steffen Henzel & Johannes Mayr, 2009. "The Virtues of VAR Forecast Pooling – A DSGE Model Based Monte Carlo Study," ifo Working Paper Series 65, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, July.
    2. Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Working Paper 2013/06, Norges Bank.
    3. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    4. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    5. Klaus Wohlrabe, 2009. "Makroökonomische Prognosen mit gemischten Frequenzen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(21), pages 22-33, November.
    6. Antipa, Pamfili & Barhoumi, Karim & Brunhes-Lesage, Véronique & Darné, Olivier, 2012. "Nowcasting German GDP: A comparison of bridge and factor models," Journal of Policy Modeling, Elsevier, vol. 34(6), pages 864-878.
    7. Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015. "Bayesian Mixed Frequency VARs," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
    8. Bańbura, Marta & Giannone, Domenico & Modugno, Michele & Reichlin, Lucrezia, 2013. "Now-Casting and the Real-Time Data Flow," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 195-237, Elsevier.
    9. Kuzin, Vladimir & Marcellino, Massimiliano & Schumacher, Christian, 2011. "MIDAS vs. mixed-frequency VAR: Nowcasting GDP in the euro area," International Journal of Forecasting, Elsevier, vol. 27(2), pages 529-542.
    10. Chudik, Alexander & Grossman, Valerie & Pesaran, M. Hashem, 2016. "A multi-country approach to forecasting output growth using PMIs," Journal of Econometrics, Elsevier, vol. 192(2), pages 349-365.
    11. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    12. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
    13. Tóth, Peter, 2014. "Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP]," MPRA Paper 63713, University Library of Munich, Germany.
    14. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    15. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    16. Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
    17. Laurent Ferrara & Dominique Guégan & Patrick Rakotomarolahy, 2010. "GDP nowcasting with ragged-edge data: a semi-parametric modeling," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 186-199.
    18. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    19. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    20. Kuzin, Vladimir N. & Marcellino, Massimiliano & Schumacher, Christian, 2009. "Pooling versus model selection for nowcasting with many predictors: an application to German GDP," Discussion Paper Series 1: Economic Studies 2009,03, Deutsche Bundesbank.

    More about this item

    Keywords

    Konjunkturprognose; Prognoseverfahren; Deutschland;
    All these keywords.

    JEL classification:

    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:62:y:2009:i:23:p:15-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.