Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.intfin.2019.101133
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
References listed on IDEAS
- Kilian, Lutz, 2019.
"Measuring global real economic activity: Do recent critiques hold up to scrutiny?,"
Economics Letters, Elsevier, vol. 178(C), pages 106-110.
- ,, 2019. "Measuring Global Real Economic Activity: Do Recent Critiques Hold Up to Scrutiny?," CEPR Discussion Papers 13455, C.E.P.R. Discussion Papers.
- Lutz Kilian, 2019. "Measuring Global Real Economic Activity: Do Recent Critiques Hold Up to Scrutiny?," CESifo Working Paper Series 7461, CESifo.
- Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020.
"Understanding Cryptocurrencies,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
- Härdle, Wolfgang Karl & Harvey, Campbell R. & Reule, Raphael C. G., 2018. "Understanding Cryptocurrencies," IRTG 1792 Discussion Papers 2018-044, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019.
"Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?,"
International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
- Libing Fang & Elie Bouri & Rangan Gupta & David Roubaud, 2018. "Does Global Economic Uncertainty Matter for the Volatility and Hedging Effectiveness of Bitcoin?," Working Papers 201858, University of Pretoria, Department of Economics.
- Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
- Elie Bouri & Naji Jalkh & Peter Molnár & David Roubaud, 2017.
"Bitcoin for energy commodities before and after the December 2013 crash: diversifier, hedge or safe haven?,"
Applied Economics, Taylor & Francis Journals, vol. 49(50), pages 5063-5073, October.
- Elie Bouri & Naji Jalkh & Peter Molnár & David Roubaud, 2017. "Bitcoin for energy commodities before and after the December 2013 crash: diversifier, hedge or safe haven?," Post-Print hal-02008553, HAL.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018.
"Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices,"
Resources Policy, Elsevier, vol. 57(C), pages 224-235.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2017. "Testing for Asymmetric Nonlinear Short- and Long-Run Relationships between Bitcoin, Aggregate Commodity and Gold Prices," Working Papers 201760, University of Pretoria, Department of Economics.
- Elie Bouri & Rangan Gupta & Amine Lahiani & Muhammad Shahbaz, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Post-Print hal-03533197, HAL.
- Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018.
"Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles,"
The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
- Elie Bouri & Rangan Gupta & Chi Keung Marco Lau & David Roubaud & Shixuan Wang, 2017. "Bitcoin and Global Financial Stress: A Copula-Based Approach to Dependence and Causality-in-Quantiles," Working Papers 201750, University of Pretoria, Department of Economics.
- Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
- Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017.
"On the return-volatility relationship in the Bitcoin market around the price crash of 2013,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
- Bouri, Elie & Azzi, Georges & Haubo Dyhrberg, Anne, 2016. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics Discussion Papers 2016-41, Kiel Institute for the World Economy (IfW Kiel).
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018.
"On the determinants of bitcoin returns: A LASSO approach,"
Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "On the determinants of bitcoin returns: a LASSO approach," Working Paper series 18-14, Rimini Centre for Economic Analysis.
- Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
- Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017.
"Some stylized facts of the Bitcoin market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
- Aurelio F. Bariviera & Mar'ia Jos'e Basgall & Waldo Hasperu'e & Marcelo Naiouf, 2017. "Some stylized facts of the Bitcoin market," Papers 1708.04532, arXiv.org.
- Bariviera, Aurelio F., 2017.
"The inefficiency of Bitcoin revisited: A dynamic approach,"
Economics Letters, Elsevier, vol. 161(C), pages 1-4.
- Aurelio F. Bariviera, 2017. "The inefficiency of Bitcoin revisited: a dynamic approach," Papers 1709.08090, arXiv.org.
- Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018.
"Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2017. "Virtual Relationships: Short- and Long-run Evidence from BitCoin and Altcoin Markets," EERI Research Paper Series EERI RP 2017/02, Economics and Econometrics Research Institute (EERI), Brussels.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2017. "Virtual Relationships: Short- and Long-run Evidence from BitCoin and Altcoin Markets," Papers 1706.07216, arXiv.org.
- Ciaian, Pavel & Kancs, d'Artis & Rajcaniova, Miroslava, 2017. "Virtual Relationships: Short- and Long-run Evidence from BitCoin and Altcoin Markets," JRC Working Papers in Economics and Finance 2017-05, Joint Research Centre, European Commission.
- Bollerslev, Tim & Ghysels, Eric, 1996.
"Periodic Autoregressive Conditional Heteroscedasticity,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
- Ederington, Louis H. & Guan, Wei, 2010. "Longer-Term Time-Series Volatility Forecasts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 1055-1076, August.
- Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Baumöhl, Eduard, 2019.
"Are cryptocurrencies connected to forex? A quantile cross-spectral approach,"
Finance Research Letters, Elsevier, vol. 29(C), pages 363-372.
- Baumöhl, Eduard, 2018. "Are cryptocurrencies connected to forex? A quantile cross-spectral approach," EconStor Preprints 174884, ZBW - Leibniz Information Centre for Economics.
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018.
"Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance,"
International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
- Klein, Tony & Thu, Hien Pham & Walther, Thomas, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," IRTG 1792 Discussion Papers 2018-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Thomas Walther & Tony Klein & Hien Pham Thu, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," Working Papers on Finance 1812, University of St. Gallen, School of Finance.
- Klein, Tony & Hien, Pham Thu & Walther, Thomas, 2018. "Bitcoin Is Not the New Gold: A Comparison of Volatility, Correlation, and Portfolio Performance," QBS Working Paper Series 2018/01, Queen's University Belfast, Queen's Business School.
- Duc Khuong Nguyen & Thomas Walther, 2020.
"Modeling and forecasting commodity market volatility with long‐term economic and financial variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 126-142, March.
- Nguyen, Duc Khuong & Walther, Thomas, 2017. "Modeling and forecasting commodity market volatility with long-term economic and financial variables," MPRA Paper 84464, University Library of Munich, Germany, revised Jan 2018.
- Thomas Walther & Duc Khuong Nguyen, 2018. "Modeling and Forecasting Commodity Market Volatility with Long-term Economic and Financial Variables," Working Papers on Finance 1824, University of St. Gallen, School of Finance.
- Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
- Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017.
"Can volume predict Bitcoin returns and volatility? A quantiles-based approach,"
Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
- Mehmet Balcilar & Elie Bouri & Rangan Gupta & David Roubaud, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Post-Print hal-02008551, HAL.
- Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012.
"A comprehensive look at financial volatility prediction by economic variables,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2010. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," CREATES Research Papers 2010-58, Department of Economics and Business Economics, Aarhus University.
- Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A Comprehensive Look at Financial Volatility Prediction by Economic Variables," BIS Working Papers 374, Bank for International Settlements.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Trimborn, Simon & Härdle, Wolfgang Karl, 2018.
"CRIX an Index for cryptocurrencies,"
Journal of Empirical Finance, Elsevier, vol. 49(C), pages 107-122.
- Simon Trimborn & Wolfgang Karl Hardle, 2020. "CRIX an index for cryptocurrencies," Papers 2009.09782, arXiv.org.
- Trimborn, Simon & Härdle, Wolfgang Karl, 2020. "CRIX an Index for cryptocurrencies," IRTG 1792 Discussion Papers 2020-009, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
- Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
- C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
- Petukhina, Alla & Trimborn, Simon & Härdle, Wolfgang Karl & Elendner, Hermann, 2018. "Investing with cryptocurrencies - evaluating the potential of portfolio allocation strategies," IRTG 1792 Discussion Papers 2018-058, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
- Ji, Qiang & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2019. "Information interdependence among energy, cryptocurrency and major commodity markets," Energy Economics, Elsevier, vol. 81(C), pages 1042-1055.
- Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
- Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
- Sofia Anyfantaki & Stelios Arvanitis & Nikolas Topaloglou, 2018. "Diversification, integration and cryptocurrency market," Working Papers 244, Bank of Greece.
- Lutz Kilian, 2009.
"Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market,"
American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
- Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
- Douglas G. Santos & Flavio A. Ziegelmann, 2014. "Volatility Forecasting via MIDAS, HAR and their Combination: An Empirical Comparative Study for IBOVESPA," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 284-299, July.
- Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
- Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
- Christian Conrad & Anessa Custovic & Eric Ghysels, 2018. "Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis," JRFM, MDPI, vol. 11(2), pages 1-12, May.
- Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
- Wang, Fangfang & Ghysels, Eric, 2015. "Econometric Analysis Of Volatility Component Models," Econometric Theory, Cambridge University Press, vol. 31(2), pages 362-393, April.
- Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
- Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
- Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Thomas Walther & Tony Klein, 2018. "Exogenous Drivers of Cryptocurrency Volatility - A Mixed Data Sampling Approach To Forecasting," Working Papers on Finance 1815, University of St. Gallen, School of Finance.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Silky Vigg Kushwah & Shab Hundal & Payal Goel, 2024. "Unveiling Interconnectedness and Volatility Transmission: A Novel GARCH Analysis of Leading Global Cryptocurrencies," International Journal of Economics and Financial Issues, Econjournals, vol. 14(3), pages 132-139, May.
- Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
- Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
- Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018.
"Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance,"
International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
- Thomas Walther & Tony Klein & Hien Pham Thu, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," Working Papers on Finance 1812, University of St. Gallen, School of Finance.
- Klein, Tony & Hien, Pham Thu & Walther, Thomas, 2018. "Bitcoin Is Not the New Gold: A Comparison of Volatility, Correlation, and Portfolio Performance," QBS Working Paper Series 2018/01, Queen's University Belfast, Queen's Business School.
- Klein, Tony & Thu, Hien Pham & Walther, Thomas, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," IRTG 1792 Discussion Papers 2018-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
- Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
- Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Omane-Adjepong, Maurice & Alagidede, Imhotep Paul, 2019. "Multiresolution analysis and spillovers of major cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 49(C), pages 191-206.
- Tzeng, Kae-Yih & Su, Yi-Kai, 2024. "Can U.S. macroeconomic indicators forecast cryptocurrency volatility?," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
More about this item
Keywords
Bitcoin; Cryptocurrencies; GARCH; Mixed data sampling; Volatility;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:63:y:2019:i:c:s1042443119302446. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.