IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v64y2024ics1544612324004501.html
   My bibliography  Save this article

Can asymmetry, long memory, and current return information improve crude oil volatility prediction? ——Evidence from ASHARV-MIDAS model

Author

Listed:
  • Chen, Zhenlong
  • Liu, Junjie
  • Hao, Xiaozhen

Abstract

We propose an ASHARV-MIDAS model that incorporates the asymmetric and long-memory characteristics of financial asset returns, while integrating current return information into the volatility equation to enhance prediction accuracy. Additionally, we derive the lag order expression and conditional variance of short-term volatility in the novel model to analyze its distinction from the classical GARCH-MIDAS model that does not consider current return information. Empirical and robustness tests demonstrate superior in-sample parameter estimation performance and more precise out-of-sample volatility prediction capabilities of our proposed model.

Suggested Citation

  • Chen, Zhenlong & Liu, Junjie & Hao, Xiaozhen, 2024. "Can asymmetry, long memory, and current return information improve crude oil volatility prediction? ——Evidence from ASHARV-MIDAS model," Finance Research Letters, Elsevier, vol. 64(C).
  • Handle: RePEc:eee:finlet:v:64:y:2024:i:c:s1544612324004501
    DOI: 10.1016/j.frl.2024.105420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612324004501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2024.105420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    2. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    3. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    4. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    5. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    9. Wu, Xinyu & Zhao, An & Cheng, Tengfei, 2023. "A Real-Time GARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 56(C).
    10. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huawei Niu & Tianyu Liu, 2024. "Forecasting the volatility of European Union allowance futures with macroeconomic variables using the GJR-GARCH-MIDAS model," Empirical Economics, Springer, vol. 67(1), pages 75-96, July.
    2. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    3. Vacca, Gianmarco & Zoia, Maria Grazia & Bagnato, Luca, 2022. "Forecasting in GARCH models with polynomially modified innovations," International Journal of Forecasting, Elsevier, vol. 38(1), pages 117-141.
    4. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    5. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    6. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    7. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    8. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    9. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    10. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    11. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    12. repec:hum:wpaper:sfb649dp2015-026 is not listed on IDEAS
    13. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    14. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    15. Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Time-varying mixture GARCH models and asymmetric volatility," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 602-623.
    16. Simon Fritzsch & Maike Timphus & Gregor Weiss, 2021. "Marginals Versus Copulas: Which Account For More Model Risk In Multivariate Risk Forecasting?," Papers 2109.10946, arXiv.org.
    17. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    18. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    19. Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
    20. Rubing Liang & Binbin Qin & Qiang Xia, 2024. "Bayesian Inference for Mixed Gaussian GARCH-Type Model by Hamiltonian Monte Carlo Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 193-220, January.
    21. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:64:y:2024:i:c:s1544612324004501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.