IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.06307.html
   My bibliography  Save this paper

High-Dimensional Granger Causality Tests with an Application to VIX and News

Author

Listed:
  • Andrii Babii
  • Eric Ghysels
  • Jonas Striaukas

Abstract

We study Granger causality testing for high-dimensional time series using regularized regressions. To perform proper inference, we rely on heteroskedasticity and autocorrelation consistent (HAC) estimation of the asymptotic variance and develop the inferential theory in the high-dimensional setting. To recognize the time series data structures we focus on the sparse-group LASSO estimator, which includes the LASSO and the group LASSO as special cases. We establish the debiased central limit theorem for low dimensional groups of regression coefficients and study the HAC estimator of the long-run variance based on the sparse-group LASSO residuals. This leads to valid time series inference for individual regression coefficients as well as groups, including Granger causality tests. The treatment relies on a new Fuk-Nagaev inequality for a class of $\tau$-mixing processes with heavier than Gaussian tails, which is of independent interest. In an empirical application, we study the Granger causal relationship between the VIX and financial news.

Suggested Citation

  • Andrii Babii & Eric Ghysels & Jonas Striaukas, 2019. "High-Dimensional Granger Causality Tests with an Application to VIX and News," Papers 1912.06307, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:1912.06307
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.06307
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Liao, Zhipeng & Phillips, Peter C. B., 2015. "Automated Estimation Of Vector Error Correction Models," Econometric Theory, Cambridge University Press, vol. 31(3), pages 581-646, June.
    2. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    3. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    4. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2006. "Predicting volatility: getting the most out of return data sampled at different frequencies," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 59-95.
    5. Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
    6. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    7. Andrii Babii & Jean-Pierre Florens, 2017. "Is completeness necessary? Estimation in nonidentified linear models," Papers 1709.03473, arXiv.org, revised Nov 2021.
    8. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    9. Florens, J.P. & Mouchart, M., 1982. "A note on noncausality," LIDAM Reprints CORE 479, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    11. Caner, Mehmet & Kock, Anders Bredahl, 2018. "Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso," Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
    12. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    13. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    14. C. Marsilli, 2014. "Variable Selection in Predictive MIDAS Models," Working papers 520, Banque de France.
    15. Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    18. E. Andreou & P. Gagliardini & E. Ghysels & M. Rubin, 2019. "Inference in Group Factor Models With an Application to Mixed‐Frequency Data," Econometrica, Econometric Society, vol. 87(4), pages 1267-1305, July.
    19. Florens, J P & Mouchart, M, 1982. "A Note on Noncausality," Econometrica, Econometric Society, vol. 50(3), pages 583-591, May.
    20. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    21. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(4), pages 703-744, August.
    22. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    23. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    24. Nze, Patrick Ango & Doukhan, Paul, 2004. "Weak Dependence: Models And Applications To Econometrics," Econometric Theory, Cambridge University Press, vol. 20(6), pages 995-1045, December.
    25. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    26. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    27. Harold D. Chiang & Yuya Sasaki, 2019. "Lasso under Multi-way Clustering: Estimation and Post-selection Inference," Papers 1905.02107, arXiv.org, revised Aug 2019.
    28. Dedecker, Jérôme & Doukhan, Paul, 2003. "A new covariance inequality and applications," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 63-80, July.
    29. Ghysels, Eric & Qian, Hang, 2019. "Estimating MIDAS regressions via OLS with polynomial parameter profiling," Econometrics and Statistics, Elsevier, vol. 9(C), pages 1-16.
    30. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    31. Eben Lazarus & Daniel J. Lewis & James H. Stock & Mark W. Watson, 2018. "HAR Inference: Recommendations for Practice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 541-559, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.
    2. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    3. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    4. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson, 2021. "Performance of Empirical Risk Minimization for Linear Regression with Dependent Data," Papers 2104.12127, arXiv.org, revised May 2023.
    5. Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2024. "Panel data nowcasting: The case of price–earnings ratios," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 292-307, March.
    6. Andrii Babii, 2022. "High-Dimensional Mixed-Frequency IV Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1470-1483, October.
    7. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    8. Yeonwoo Rho & Yun Liu & Hie Joo Ahn, 2020. "Revealing Cluster Structures Based on Mixed Sampling Frequencies," Papers 2004.09770, arXiv.org, revised Feb 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
    2. Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023. "Machine learning panel data regressions with heavy-tailed dependent data: Theory and application," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    4. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    5. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    6. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    7. Jianhao Lin & Jiacheng Fan & Yifan Zhang & Liangyuan Chen, 2023. "Real‐time macroeconomic projection using narrative central bank communication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 202-221, March.
    8. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
    9. Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
    10. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
    11. Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
    12. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
    13. Baumeister, Christiane, 2021. "Measuring Market Expectations," CEPR Discussion Papers 16520, C.E.P.R. Discussion Papers.
    14. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    15. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    16. Granziera, Eleonora & Sekhposyan, Tatevik, 2019. "Predicting relative forecasting performance: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
    17. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    18. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    19. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
    20. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.06307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.