IDEAS home Printed from https://ideas.repec.org/p/zbw/vfsc18/181622.html
   My bibliography  Save this paper

Weather-induced Short-term Fluctuations of Economic Output

Author

Listed:
  • Schreiber, Sven

Abstract

We contribute to the recent literature on the economic effects of those weather conditions that deviate from their regular seasonal pattern. To this end we use local temperature and snow measurements across Germany to analyze their impact on German monthly total industrial and construction-sector production. We find noticeable effects of the various (linear and nonlinear, contemporaneous and dynamic) weather regressors, which in the –seasonally adjusted– construction sector growth data imply an extra explanatory power of more than 50% of the variation, compared to benchmark predictive regressions. As expected, the impact is quite a bit less in total industrial production. From our estimates we obtain (seasonally as well as) weather adjusted production series, and our regression-based approach also yields confidence intervals for these adjustments. The estimated adjustments are quantitatively relevant also for broad output (quarterly GDP). In a mixed-frequency framework we find some value of the estimated monthly weather impact for quarterly GDP nowcasts in (quasi) real time.

Suggested Citation

  • Schreiber, Sven, 2018. "Weather-induced Short-term Fluctuations of Economic Output," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181622, Verein für Socialpolitik / German Economic Association.
  • Handle: RePEc:zbw:vfsc18:181622
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/181622/1/VfS-2018-pid-13963.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    2. Döhrn, Roland & an de Meulen, Philipp, 2015. "Weather, the Forgotten Factor in Business Cycle Analyses," Ruhr Economic Papers 539, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    3. Michael Boldin & Jonathan H. Wright, 2015. "Weather-Adjusting Economic Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(2 (Fall)), pages 227-278.
    4. Erik Haustein & Sven Schreiber, 2016. "Adjusting production indices for varying weather effects," IMK Working Paper 171-2016, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    5. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," University of California at Los Angeles, Anderson Graduate School of Management qt9mf223rs, Anderson Graduate School of Management, UCLA.
    6. Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schreiber, Sven, 2017. "Weather adjustment of economic output," Discussion Papers 2017/5, Free University Berlin, School of Business & Economics.
    2. Diakonova, Marina & Molina, Luis & Mueller, Hannes & Pérez, Javier J. & Rauh, Christopher, 2024. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 5(4).
    3. Marie Bessec, 2019. "Revisiting the transitional dynamics of business cycle phases with mixed-frequency data," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 711-732, August.
    4. Erik Haustein & Sven Schreiber, 2016. "Adjusting production indices for varying weather effects," IMK Working Paper 171-2016, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    5. Stylianos Asimakopoulos & Joan Paredes & Thomas Warmedinger, 2020. "Real‐Time Fiscal Forecasting Using Mixed‐Frequency Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(1), pages 369-390, January.
    6. Sarun Kamolthip, 2021. "Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data," PIER Discussion Papers 165, Puey Ungphakorn Institute for Economic Research.
    7. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News media vs. FRED-MD for macroeconomic forecasting," Working Papers No 08/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    8. Thomas B. Götz & Alain W. Hecq, 2019. "Granger Causality Testing in Mixed‐Frequency VARs with Possibly (Co)Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(6), pages 914-935, November.
    9. Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    10. Alain Hecq & Marie Ternes & Ines Wilms, 2023. "Hierarchical Regularizers for Reverse Unrestricted Mixed Data Sampling Regressions," Papers 2301.10592, arXiv.org, revised Nov 2024.
    11. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    12. Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023. "Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany," Discussion Papers 34/2023, Deutsche Bundesbank.
    13. Valentina Aprigliano & Guerino Ardizzi & Libero Monteforte, 2017. "Using the payment system data to forecast the Italian GDP," Temi di discussione (Economic working papers) 1098, Bank of Italy, Economic Research and International Relations Area.
    14. Julián Alonso Cárdenas-Cárdenas & Edgar Caicedo-García & Eliana R. González Molano, 2020. "Estimación de la variación del precio de los alimentos con modelos de frecuencias mixtas," Borradores de Economia 1109, Banco de la Republica de Colombia.
    15. Bacchiocchi, Emanuele & Bastianin, Andrea & Moramarco, Graziano, 2024. "Macroeconomic Spillovers of Weather Shocks across U.S. States," FEEM Working Papers 343506, Fondazione Eni Enrico Mattei (FEEM).
    16. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    17. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
    18. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    19. Mahmood, Asif & Masood, Hina, 2024. "A High-frequency Monthly Measure of Real Economic Activity in Pakistan," MPRA Paper 121838, University Library of Munich, Germany.
    20. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.

    More about this item

    Keywords

    weather; business cycle; nowcasting; MIDAS;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:vfsc18:181622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vfsocea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.