IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.12426.html
   My bibliography  Save this paper

Using Company Specific Headlines and Convolutional Neural Networks to Predict Stock Fluctuations

Author

Listed:
  • Jonathan Readshaw
  • Stefano Giani

Abstract

This work presents a Convolutional Neural Network (CNN) for the prediction of next-day stock fluctuations using company-specific news headlines. Experiments to evaluate model performance using various configurations of word-embeddings and convolutional filter widths are reported. The total number of convolutional filters used is far fewer than is common, reducing the dimensionality of the task without loss of accuracy. Furthermore, multiple hidden layers with decreasing dimensionality are employed. A classification accuracy of 61.7\% is achieved using pre-learned embeddings, that are fine-tuned during training to represent the specific context of this task. Multiple filter widths are also implemented to detect different length phrases that are key for classification. Trading simulations are conducted using the presented classification results. Initial investments are more than tripled over a 838 day testing period using the optimal classification configuration and a simple trading strategy. Two novel methods are presented to reduce the risk of the trading simulations. Adjustment of the sigmoid class threshold and re-labelling headlines using multiple classes form the basis of these methods. A combination of these approaches is found to more than double the Average Trade Profit (ATP) achieved during baseline simulations.

Suggested Citation

  • Jonathan Readshaw & Stefano Giani, 2020. "Using Company Specific Headlines and Convolutional Neural Networks to Predict Stock Fluctuations," Papers 2006.12426, arXiv.org.
  • Handle: RePEc:arx:papers:2006.12426
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.12426
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. M. Lerman, 1980. "Fitting Segmented Regression Models by Grid Search," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 77-84, March.
    2. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    3. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    5. Bomfim, Antulio N., 2003. "Pre-announcement effects, news effects, and volatility: Monetary policy and the stock market," Journal of Banking & Finance, Elsevier, vol. 27(1), pages 133-151, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stylianos X. Koufadakis, 2015. "Asymmetries on Closed End Country Funds Premium and Monetary Policy Announcements: An Approach Trough the Perspective of Foreign Countries," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 65(3-4), pages 29-65, july-Dece.
    2. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    3. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    4. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    5. Thai-Ha Le & Donghyun Park & Cong-Phu-Khanh Tran & Binh Tran-Nam, 2018. "The Impact of the Hai Yang Shi You 981 Event on Vietnam’s Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3_suppl), pages 344-375, December.
    6. Bernoth, Kerstin & von Hagen, Jürgen, 2003. "The performance of the Euribor futures market: Effficiency and the impact of ECB policy announcements," ZEI Working Papers B 27-2003, University of Bonn, ZEI - Center for European Integration Studies.
    7. Jennie Bai & Turan G. Bali & Quan Wen, 2019. "Is There a Risk-Return Tradeoff in the Corporate Bond Market? Time-Series and Cross-Sectional Evidence," NBER Working Papers 25995, National Bureau of Economic Research, Inc.
    8. Jan Schulz & Mishael Milaković, 2023. "How Wealthy are the Rich?," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 69(1), pages 100-123, March.
    9. Herold, Michael & Kanz, Andreas & Muck, Matthias, 2021. "Do opinion polls move stock prices? Evidence from the US presidential election in 2016," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 665-690.
    10. Gao, Wang & Wei, Jiajia & Zhang, Hongwei & Zhang, Haizhen, 2024. "Does climate policy uncertainty exacerbate extreme risk spillovers between green economy and energy metals?," Resources Policy, Elsevier, vol. 91(C).
    11. Anastasios Demertzidis & Vahidin Jeleskovic, 2021. "Empirical Estimation of Intraday Yield Curves on the Italian Interbank Credit Market e-MID," JRFM, MDPI, vol. 14(5), pages 1-23, May.
    12. Vithessonthi, Chaiporn & Techarongrojwong, Yaowaluk, 2013. "Do monetary policy announcements affect stock prices in emerging market countries? The case of Thailand," Journal of Multinational Financial Management, Elsevier, vol. 23(5), pages 446-469.
    13. Ung, Sze Nie & Gebka, Bartosz & Anderson, Robert D.J., 2023. "Is sentiment the solution to the risk–return puzzle? A (cautionary) note," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    14. Chuliá, Helena & Guillén, Montserrat & Uribe, Jorge M., 2017. "Measuring uncertainty in the stock market," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 18-33.
    15. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    16. Kinnunen, Jyri, 2017. "Dynamic cross-autocorrelation in stock returns," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 162-173.
    17. Matthias M. M. Buehlmaier & Kit Pong Wong, 2020. "Should investors join the index revolution? Evidence from around the world," Journal of Asset Management, Palgrave Macmillan, vol. 21(3), pages 192-218, May.
    18. Jyri Kinnunen & Minna Martikainen, 2017. "Dynamic Autocorrelation and International Portfolio Allocation," Multinational Finance Journal, Multinational Finance Journal, vol. 21(1), pages 21-48, March.
    19. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    20. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.12426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.