IDEAS home Printed from https://ideas.repec.org/f/c/psu591.html
   My authors  Follow this author

Bin Su

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Yang, Guanglei & Zhang, Guoxing & Cao, Dongqin & Zha, Donglan & Gao, Xiulin & Su, Bin, 2024. "China's provincial-level sustainable energy transition requires accelerating renewable energy technological innovation," Energy, Elsevier, vol. 288(C).

    Cited by:

    1. Wang, Zongrun & Cao, Xuxin & Ren, Xiaohang & Gozgor, Giray, 2024. "Digital finance and the energy transition: Evidence from Chinese prefecture-level cities," Global Finance Journal, Elsevier, vol. 61(C).
    2. Yang, Chengying & Li, Mingming & Zhou, Dianyi, 2024. "Energy assessment in rural regions of China with various scenarios: Historical–to–futuristic," Energy, Elsevier, vol. 302(C).
    3. Wan, Jiaxin & Ma, Wanrong & Mao, Chunxiao, 2024. "Navigating economic and legal compliance in digital resource management: Technological Pathways to sustainability with digital government," Resources Policy, Elsevier, vol. 95(C).
    4. Zhou, Dequn & Chen, Ting & Ding, Hao & Wang, Qunwei, 2024. "Tracking the provincial energy transition in China: A comprehensive index," Energy, Elsevier, vol. 304(C).
    5. He, Ruofan & Wan, Panbing & Yang, Mian, 2024. "The resource curse in energy-rich regions: Evidence from China's ultra-high voltage transmission," Energy, Elsevier, vol. 304(C).
    6. Hou, Yaru & Yang, Mian & Ma, Yanran & Zhang, Haiying, 2024. "Study on city's energy transition: Evidence from the establishment of the new energy demonstration cities in China," Energy, Elsevier, vol. 292(C).

  2. Zhang, Guo-Xing & Yang, Yang & Su, Bin & Nie, Yan & Duan, Hong-Bo, 2023. "Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015–2019)," Energy Economics, Elsevier, vol. 120(C).

    Cited by:

    1. Li, Zheng & Jin, Bohan, 2024. "A breath of fresh air: Coal power plant closures and health in China," Energy Economics, Elsevier, vol. 129(C).
    2. Mingying Zhu & Anthony Heyes, 2024. "Dreaming of Blue Skies: Evidence on Air Pollution and the Mobility Aspirations of Young People in Beijing from Online Search Behavior," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(11), pages 2889-2933, November.
    3. Lingling Li & Jiarui Pei & Qiang Shen, 2023. "A Review of Research on Dynamic and Static Economic Dispatching of Hybrid Wind–Thermal Power Microgrids," Energies, MDPI, vol. 16(10), pages 1-23, May.
    4. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    5. Jiang, Lei & Yang, Yue & Wu, Qingyang & Yang, Linshuang & Yang, Zaoli, 2024. "Hotter days, dirtier air: The impact of extreme heat on energy and pollution intensity in China," Energy Economics, Elsevier, vol. 130(C).
    6. Ewelina Olba-Zięty & Jakub Jan Zięty & Mariusz Jerzy Stolarski, 2023. "External Environmental Costs of Solid Biomass Production against the Legal and Political Background in Europe," Energies, MDPI, vol. 16(10), pages 1-27, May.
    7. Wang, Hui & Zhang, Yunyun & Lin, Weifen & Wei, Wendong, 2023. "Transregional electricity transmission and carbon emissions: Evidence from ultra-high voltage transmission projects in China," Energy Economics, Elsevier, vol. 123(C).
    8. Xu, Meng & Zhang, Silu & Li, Panwei & Weng, Zhixiong & Xie, Yang & Lan, Yan, 2024. "Energy-related carbon emission reduction pathways in Northwest China towards carbon neutrality goal," Applied Energy, Elsevier, vol. 358(C).
    9. Hengzhen Wang & Ying Xu & Zhongkai Yi & Jianing Xu & Yilin Xie & Zhimin Li, 2024. "A Review on Economic Dispatch of Power System Considering Atmospheric Pollutant Emissions," Energies, MDPI, vol. 17(8), pages 1-30, April.

  3. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).

    Cited by:

    1. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    2. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    3. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    4. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).

  4. Gao, Cuixia & Tao, Simin & Su, Bin & Mensah, Isaac Adjei & Sun, Mei, 2023. "Exploring renewable energy trade coopetition relationships: Evidence from belt and road countries, 1996-2018," Renewable Energy, Elsevier, vol. 202(C), pages 196-209.

    Cited by:

    1. Shuai, Jing & Zhao, Yujia & Shuai, Chuanmin & Wang, Jingjin & Yi, Tian & Cheng, Jinhua, 2023. "Assessing the international co-opetition dynamics of rare earth resources between China, USA, Japan and the EU: An ecological niche approach," Resources Policy, Elsevier, vol. 82(C).
    2. Xia, Qifan & Du, Debin & Yu, Zihao & Li, Xiya & Zhang, Qiang, 2024. "Coins have both sides: Revealing the structure and pattern of global interdependence network for five critical metals," Resources Policy, Elsevier, vol. 88(C).
    3. Yan, Jingjing & Guo, Yaoqi & Zhang, Hongwei, 2024. "The dynamic evolution mechanism of structural dependence characteristics in the global oil trade network," Energy, Elsevier, vol. 303(C).

  5. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).

    Cited by:

    1. Li, Xingwei & Huang, Yicheng, 2024. "Exploring the mechanisms affecting energy consumption in the construction industry using an integrated theoretical framework: Evidence from the Yangtze River economic Belt," Energy, Elsevier, vol. 299(C).
    2. Suola Shao & Chengcheng Xu, 2024. "Performance Analysis of Novel Direct-Condensation Heating Panels Integrated with Air Source Heat Pump System on Thermal Economy and System Efficiencies," Energies, MDPI, vol. 17(18), pages 1-22, September.
    3. Xu, Feng & Li, Xiaodong & Yang, Zhihan & Zhu, Chen, 2024. "Spatiotemporal characteristics and driving factor analysis of embodied CO2 emissions in China's building sector," Energy Policy, Elsevier, vol. 188(C).
    4. Mengru Song & Yanjun Wang & Cheng Wang & Walter Musakwa & Yiye Ji, 2024. "Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    5. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    6. Marek Walacik & Aneta Chmielewska, 2024. "Energy Performance in Residential Buildings as a Property Market Efficiency Driver," Energies, MDPI, vol. 17(10), pages 1-18, May.

  6. Eldowma, Ibrahim Ahmed & Zhang, Guoxing & Su, Bin, 2023. "The nexus between electricity consumption, carbon dioxide emissions, and economic growth in Sudan (1971–2019)," Energy Policy, Elsevier, vol. 176(C).

    Cited by:

    1. Cui, Yin, 2023. "The influencing factors of carrying capacity of urban electricity infrastructure: Case study of six Chinese mega-cities," Energy, Elsevier, vol. 282(C).
    2. Junjie Wang & Juntao Ma & Sihui Wang & Zhuozhi Shu & Xiaoqiong Feng & Xuemei Xu & Hanmei Yin & Yi Zhang & Tao Jiang, 2023. "Coordination Relationship of Carbon Emissions and Air Pollutants under Governance Measures in a Typical Industrial City in China," Sustainability, MDPI, vol. 16(1), pages 1-18, December.

  7. Costa, Alberto & Ng, Tsan Sheng & Su, Bin, 2023. "Long-term solar PV planning: An economic-driven robust optimization approach," Applied Energy, Elsevier, vol. 335(C).

    Cited by:

    1. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    2. Yingyue Li & Hongjun Li & Rui Miao & He Qi & Yi Zhang, 2023. "Energy–Environment–Economy (3E) Analysis of the Performance of Introducing Photovoltaic and Energy Storage Systems into Residential Buildings: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    3. Kang, Hyuna & Kim, Hakpyeong & Hong, Juwon & Zhang, Ruixiaoxiao & Lee, Minhyun & Hong, Taehoon, 2024. "Harnessing sunlight beyond earth: Sustainable vision of space-based solar power systems in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

  8. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).

    Cited by:

    1. Shi, Han & Wang, Bo & Qiu, Yueming Lucy & Deng, Nana & Xie, Baichen & Zhang, Bin & Ma, Shijun, 2024. "The unequal impacts of extremely high temperatures on households’ adaptive behaviors: Empirical evidence from fine-grained electricity consumption data," Energy Policy, Elsevier, vol. 190(C).
    2. Chen, Haitao & Zhang, Bin & Liu, Hua & Cao, Jiguo, 2024. "The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model," Energy, Elsevier, vol. 288(C).
    3. Sun, Tingxuan, 2024. "Role of Inclusive Finance on oil Resource production targets: How Fiscal Pressures influence natural resources policy and green recovery in Gulf countries?," Resources Policy, Elsevier, vol. 88(C).

  9. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.

    Cited by:

    1. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).

  10. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).

    Cited by:

    1. Wang, Shengyan & Li, Bingkang & Zhao, Xudong & Hu, Qianchen & Liu, Da, 2024. "Assessing fossil energy supply security in China using ecological network analysis from a supply chain perspective," Energy, Elsevier, vol. 288(C).
    2. Zhang, Xiuqi & Meng, Xiangyu & Su, Chi Wei, 2024. "The security of energy import: Do economic policy uncertainty and geopolitical risk really matter?," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 377-388.
    3. Zhao, Chengxing & Liu, Jianfeng & Dai, Hangyu & Huang, Haoyong & Shi, Xiangchao, 2024. "Frictional evolution process and stability properties of Longmaxi shale under fluid injection," Energy, Elsevier, vol. 294(C).
    4. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    5. Bajra, Ujkan Q. & Ermir Rogova, & Avdiaj, Sefer, 2024. "Cryptocurrency blockchain and its carbon footprint: Anticipating future challenges," Technology in Society, Elsevier, vol. 77(C).
    6. Su, Chi-Wei & Yang, Shengyao & Dumitrescu Peculea, Adelina & Ioana Biţoiu, Teodora & Qin, Meng, 2024. "Energy imports in turbulent eras: Evidence from China," Energy, Elsevier, vol. 306(C).

  11. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).

    Cited by:

    1. Zhao, Jiqiang & Wu, Xianhua & Guo, Ji & Gao, Chao, 2022. "Allocation of SO2 emission rights in city agglomerations considering cross-border transmission of pollutants: A new network DEA model," Applied Energy, Elsevier, vol. 325(C).
    2. Jin, Peizhen & Wang, Siyu & Yin, Desheng & Zhang, Hang, 2023. "Environmental institutional supply that shapes a green economy: Evidence from Chinese cities," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    3. Jiang, Qisheng & Tang, Pengcheng, 2023. "All roads lead to Rome? Carbon emissions, pollutant emissions and local officials’ political promotion in China," Energy Policy, Elsevier, vol. 181(C).
    4. Jiekun Song & Lina Jiang & Zeguo He & Zhicheng Liu & Xueli Leng, 2022. "Characteristics Analysis and Identification of Key Sectors of Air Pollutant Emissions in China from the Perspective of Complex Metabolic Network," IJERPH, MDPI, vol. 19(15), pages 1-28, July.

  12. Zhang, Zhenhua & Zhang, Guoxing & Su, Bin, 2022. "The spatial impacts of air pollution and socio-economic status on public health: Empirical evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).

    Cited by:

    1. Rakhman, Fuad & Wijayana, Singgih, 2024. "Human development and the quality of financial reporting among the local governments in Indonesia," Journal of International Accounting, Auditing and Taxation, Elsevier, vol. 56(C).
    2. Jie Gao & Wu Zhang & Chunbaixue Yang & Qun Wang & Rui Yuan & Rui Wang & Limiao Zhang & Zhijian Li & Xiaoli Luo, 2023. "A Comparative Study of China’s Carbon Neutrality Policy and International Research Keywords under the Background of Decarbonization Plans in China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    3. Xuhui Ding & Yong Chen & Min Li & Narisu Liu, 2022. "Booster or Killer? Research on Undertaking Transferred Industries and Residents’ Well-Being Improvements," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    4. Zang, Xuheng & Feng, Jiankang & Song, Mingyue, 2024. "The impact of air pollution on household vulnerability to poverty: An empirical study from household data in China," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1369-1383.
    5. Dongling Wang & Yuming Zhang & Xiaoyi Zhang, 2022. "Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    6. Lee, Chien-Chiang & Yuan, Zihao, 2024. "Impact of energy poverty on public health: A non-linear study from an international perspective," World Development, Elsevier, vol. 174(C).
    7. Zhang, Zhenhua & Wang, Jing & Feng, Chao & Chen, Xi, 2023. "Do pilot zones for green finance reform and innovation promote energy savings? Evidence from China," Energy Economics, Elsevier, vol. 124(C).
    8. Binbin Ye & Padmaja Krishnan & Shiguo Jia, 2022. "Public Concern about Air Pollution and Related Health Outcomes on Social Media in China: An Analysis of Data from Sina Weibo (Chinese Twitter) and Air Monitoring Stations," IJERPH, MDPI, vol. 19(23), pages 1-21, December.
    9. Bin He & Mengzhen Qi & Ning Wang & Zhenhua Zhang, 2022. "Avoiding Real Harm but False Good: The Influence Mechanism of Political Relations on the Effectiveness of Environmental Regulation Policies," IJERPH, MDPI, vol. 19(23), pages 1-16, November.

  13. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).

    Cited by:

    1. Safi, Adnan & Haseeb, Muhammad & Islam, Madeeha & Umar, Muhammad, 2023. "Can sustainable resource management overcome geopolitical risk?," Resources Policy, Elsevier, vol. 87(PB).
    2. Nwani, Chinazaekpere & Usman, Ojonugwa & Okere, Kingsley Ikechukwu & Bekun, Festus Victor, 2023. "Technological pathways to decarbonisation and the role of renewable energy: A study of European countries using consumption-based metrics," Resources Policy, Elsevier, vol. 83(C).
    3. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    4. Ma, Dan & Tang, Jiaqi & Jiang, Xuemei, 2023. "Effects of digital global value chain participation on CO2 emissions embodied in digital exports: New evidence from PSTR approach," Energy Economics, Elsevier, vol. 126(C).
    5. Dong, Zhaoyingzi & Xiao, Yue, 2024. "Carbon emissions trading policy and climate injustice: A study on economic distributional impacts," Energy, Elsevier, vol. 296(C).

  14. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).

    Cited by:

    1. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    2. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    3. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    4. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    5. Xia, Quanzhi & Han, Mengyao & Guan, Shihui & Wu, Xiaofang & Zhang, Bo, 2022. "Tracking embodied energy flows of China's megacities via multi-scale supply chains," Energy, Elsevier, vol. 260(C).
    6. Cao, Xin & Liu, Chang & Wu, Mingxuan & Li, Zhi & Wang, Yihan & Wen, Zongguo, 2023. "Heterogeneity and connection in the spatial–temporal evolution trend of China’s energy consumption at provincial level," Applied Energy, Elsevier, vol. 336(C).
    7. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    8. Liu, Yang & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2024. "Towards a sustainable electricity industry in China: An appraisal of the efficacy of environmental policies," Utilities Policy, Elsevier, vol. 86(C).

  15. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).

    Cited by:

    1. Manisha Jain, 2022. "Energy efficiency targets and tracking savings: Measurement issues in developing economies," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2022-015, Indira Gandhi Institute of Development Research, Mumbai, India.
    2. Costa, Alberto & Ng, Tsan Sheng & Su, Bin, 2023. "Long-term solar PV planning: An economic-driven robust optimization approach," Applied Energy, Elsevier, vol. 335(C).
    3. Alfonso Marino & Paolo Pariso & Michele Picariello, 2023. "Energy use and End-use Technologies: Organizational and Energy Analysis in Italian Hospitals," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 36-45, May.
    4. Jun Liu & Yu Qian & Yuanjun Yang & Zhidan Yang, 2022. "Can Artificial Intelligence Improve the Energy Efficiency of Manufacturing Companies? Evidence from China," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    5. Fikru, Mahelet G. & Kisswani, Khalid M., 2023. "Environmental impacts of household energy use in ASEAN-5 countries: Are there asymmetric effects?," Energy Policy, Elsevier, vol. 182(C).
    6. Daniela Artemisa Calu & Adriana Ana Maria Davidescu & Alina Mihaela Irimescu & Corina-Graziella Batca Dumitru & Viorel Avram, 2023. "Implementation of Energy Efficiency Improvement Measures in Romania and the Role of Professional Accountants," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(63), pages 479-479, April.

  16. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).

    Cited by:

    1. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    2. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    3. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    4. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    5. Zhang, Guoxing & Shen, Lin & Su, Bin, 2023. "Temperature change and daily urban-rural residential electricity consumption in northwestern China: Responsiveness and inequality," Energy Economics, Elsevier, vol. 126(C).
    6. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    7. Zhang, Guo-Xing & Yang, Yang & Su, Bin & Nie, Yan & Duan, Hong-Bo, 2023. "Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015–2019)," Energy Economics, Elsevier, vol. 120(C).
    8. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    9. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    10. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  17. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).

    Cited by:

    1. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    2. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    3. Bingjiang Luan & Hanshuo Yang & Hong Zou & Xi Yu, 2023. "The impact of the digital economy on inter-city carbon transfer in China using the life cycle assessment model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    4. Haobo Chen & Shangyu Liu & Yaoqiu Kuang & Jie Shu & Zetao Ma, 2023. "Decomposition Analysis of Regional Electricity Consumption Drivers Considering Carbon Emission Constraints: A Comparison of Guangdong and Yunnan Provinces in China," Energies, MDPI, vol. 16(24), pages 1-25, December.

  18. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).

    Cited by:

    1. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    2. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    3. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    4. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    5. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    6. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    7. Ji, Chun-Yi & Tan, Zi-Kai & Chen, Bin-Jia & Zhou, Ding-Ce & Qian, Wu-Yong, 2024. "The impact of environmental policies on renewable energy investment decisions in the power supply chain," Energy Policy, Elsevier, vol. 186(C).
    8. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    9. Mhadhbi, Mayssa, 2024. "The interconnected carbon, fossil fuels, and clean energy markets: Exploring Europe and China's perspectives on climate change," Finance Research Letters, Elsevier, vol. 62(PB).
    10. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    11. Ma, Dan & Tang, Jiaqi & Jiang, Xuemei, 2023. "Effects of digital global value chain participation on CO2 emissions embodied in digital exports: New evidence from PSTR approach," Energy Economics, Elsevier, vol. 126(C).
    12. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    13. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).
    14. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    15. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    16. Yanmei Li & Yue Wei & Xin Li & Liyuan Fu & Tianfa Xie & Siyan Liu & Yan Kang, 2024. "Carbon Emission Drivers and Critical Paths in the Interaction of the "Local-Domestic-International" Economic Cycle - A case study of Beijing," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(3), pages 1-6.
    17. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.
    18. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  19. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

    Cited by:

    1. Feng, Jie & Gao, Junhong, 2023. "Natural resource curse hypothesis and governance: Understanding the role of rule of law and political risk in the context of China," Resources Policy, Elsevier, vol. 85(PB).
    2. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    3. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    4. Long, Dengjie & Du, Junhua & Xin, Yongrong, 2023. "Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China," Resources Policy, Elsevier, vol. 85(PB).
    5. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    6. Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
    7. Sun, Chen & Song, Junnian & Zhang, Dongqi & Wang, Xiaofan & Yang, Wei & Qi, Zhimin & Chen, Shaoqing, 2023. "Tracing urban carbon footprints differentiating supply chain complexity: A metropolis case," Energy, Elsevier, vol. 282(C).
    8. Sun, Chuanwang & Xu, Zhehong & Zheng, Hongwei, 2023. "Green transformation of the building industry and the government policy effects: Policy simulation based on the DSGE model," Energy, Elsevier, vol. 268(C).
    9. Ma, Jianhong & Wang, Ning & Chen, Zihao & Wang, Libo & Xiong, Qiyang & Chen, Peilin & Zhang, Hongxia & Zheng, Ying & Chen, Zhan-Ming, 2024. "Accounting and decomposition of China's CO2 emissions 1981–2021," Applied Energy, Elsevier, vol. 375(C).

  20. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).

    Cited by:

    1. Zhou, Huimin & Dang, Yaoguo & Yang, Yingjie & Wang, Junjie & Yang, Shaowen, 2023. "An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles," Energy, Elsevier, vol. 263(PC).
    2. Xue Wang & Jiayuan Zhang & Deqing Ma & Hao Sun, 2023. "Green Agricultural Products Supply Chain Subsidy Scheme with Green Traceability and Data-Driven Marketing of the Platform," IJERPH, MDPI, vol. 20(4), pages 1-29, February.
    3. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    4. Zhang, Dongyang, 2022. "Do heterogenous subsides work differently on environmental innovation? A mechanism exploration approach," Energy Economics, Elsevier, vol. 114(C).
    5. Cai, Dong & Zhang, Guoxing & Lai, Kee-hung & Guo, Chunxiang & Su, Bin, 2024. "Government incentive contract design for carbon reduction innovation considering market value under asymmetric information," Energy Policy, Elsevier, vol. 186(C).
    6. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    7. Ji, Chun-Yi & Tan, Zi-Kai & Chen, Bin-Jia & Zhou, Ding-Ce & Qian, Wu-Yong, 2024. "The impact of environmental policies on renewable energy investment decisions in the power supply chain," Energy Policy, Elsevier, vol. 186(C).
    8. Li, Jingjing & Wang, Zhaoxin & Li, Hui & Jiao, Jianling, 2024. "Which policy can effectively promote the formal recycling of power batteries in China?," Energy, Elsevier, vol. 299(C).
    9. Liu, Bingchun & Song, Chengyuan & Liang, Xiaoqin & Lai, Mingzhao & Yu, Zhecheng & Ji, Jie, 2023. "Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios," Energy Policy, Elsevier, vol. 177(C).
    10. Li, Chengjiang & Hao, Qianwen & Wang, Honglei & Hu, Yu-jie & Xu, Guoteng & Qin, Quande & Wang, Xiaolin & Negnevitsky, Michael, 2024. "Assessing green methanol vehicles' deployment with life cycle assessment-system dynamics model," Applied Energy, Elsevier, vol. 363(C).
    11. Huo, Tengfei & Cong, Xiaobo & Cheng, Cong & Cai, Weiguang & Zuo, Jian, 2023. "What is the driving mechanism for the carbon emissions in the building sector? An integrated DEMATEL-ISM model," Energy, Elsevier, vol. 274(C).
    12. Wang, Yuyan & Zhang, Xiaozhen & Cheng, T.C.E. & Wu, Tsung-Hsien, 2023. "Choice of the co-opetition model for a new energy vehicle supply chain under government subsidies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).

  21. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).

    Cited by:

    1. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    2. Jiangjun Wan & Chunchi Ma & Tian Jiang & Andrew Phillips & Xiong Wu & Yanlan Wang & Ziming Wang & Ying Cao, 2024. "A spatial econometric investigation into road traffic accessibility and economic growth: insights from the Chengdu-Chongqing twin-city economic circle," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-9, December.
    3. Hailing Wu & Yuanjun Li & Kaihuai Liao & Qitao Wu & Kanhai Shen, 2024. "Structural Characteristics of Expressway Carbon Emission Correlation Network and Its Influencing Factors: A Case Study in Guangdong Province," Sustainability, MDPI, vol. 16(22), pages 1-20, November.
    4. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).

  22. Wang, Ge & Zhang, Qi & Su, Bin & Shen, Bo & Li, Yan & Li, Zhengjun, 2021. "Coordination of tradable carbon emission permits market and renewable electricity certificates market in China," Energy Economics, Elsevier, vol. 93(C).

    Cited by:

    1. Chang, Xin & Wu, Zhaoyuan & Wang, Jingting & Zhang, Xingyu & Zhou, Ming & Yu, Tao & Wang, Yuyang, 2023. "The coupling effect of carbon emission trading and tradable green certificates under electricity marketization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    3. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
    4. Yang, Yan-Shen & Xie, Bai-Chen & Tan, Xu, 2024. "Impact of green power trading mechanism on power generation and interregional transmission in China," Energy Policy, Elsevier, vol. 189(C).
    5. Shen, Bo & Hove, Anders & Hu, Junfeng & Dupuy, Max & Bregnbæk, Lars & Zhang, Yuejun & Zhang, Ning, 2024. "Coping with power crises under decarbonization: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Keke Wang & Dongxiao Niu & Min Yu & Yi Liang & Xiaolong Yang & Jing Wu & Xiaomin Xu, 2021. "Analysis and Countermeasures of China’s Green Electric Power Development," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    7. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2024. "Mutual conversion mechanisms for environmental interest products to jointly enhance synergistic effect between power, CET and TGC markets in China," Energy Economics, Elsevier, vol. 131(C).
    8. Wang, Wei & Xiao, Weiwei & Bai, Caiquan, 2022. "Can renewable energy technology innovation alleviate energy poverty? Perspective from the marketization level," Technology in Society, Elsevier, vol. 68(C).
    9. Pan, Yuling & Dong, Feng, 2023. "The impacts of energy finance policies and renewable energy subsidy on energy vulnerability under carbon peaking scenarios," Energy, Elsevier, vol. 273(C).
    10. Wu Xie & Wenzhe Guo & Wenbin Shao & Fangyi Li & Zhipeng Tang, 2021. "Environmental and Health Co-Benefits of Coal Regulation under the Carbon Neutral Target: A Case Study in Anhui Province, China," Sustainability, MDPI, vol. 13(11), pages 1-15, June.
    11. Hui Wang & Congcong Wang & Wenhui Zhao, 2022. "Decision on Mixed Trading between Medium- and Long-Term Markets and Spot Markets for Electricity Sales Companies under New Electricity Reform Policies," Energies, MDPI, vol. 15(24), pages 1-23, December.
    12. Ying, Zhou & Xin-gang, Zhao, 2021. "The impact of Renewable Portfolio Standards on carbon emission trading under the background of China’s electricity marketization reform," Energy, Elsevier, vol. 226(C).
    13. Hu, Fanshuai & Zhou, Dequn & Zhu, Qingyuan & Wang, Qunwei, 2024. "How dynamic renewable portfolio standards affect trading behavior of power generators? Considering green certificate and reward/penalty mechanism," Applied Energy, Elsevier, vol. 375(C).
    14. Wu, Jiaqian & Zheng, Xiaolin & Yu, Songmin & Yu, Lean, 2024. "Modeling multi-market coupling effects considering the consumption above quota trading market in renewable portfolio standards: An agent-based perspective," Energy Economics, Elsevier, vol. 138(C).
    15. Li, Jialin & Hu, Yu & Chi, Yuanying & Liu, Dunnan & Yang, Shuxia & Gao, Zhiyuan & Chen, Yuetong, 2024. "Analysis on the synergy between markets of electricity, carbon, and tradable green certificates in China," Energy, Elsevier, vol. 302(C).
    16. Zhou, Dequn & Zhang, Yining & Wang, Qunwei & Ding, Hao, 2024. "How do uncertain renewable energy induced risks evolve in a two-stage deregulated wholesale power market," Applied Energy, Elsevier, vol. 353(PB).
    17. Zhen, Juntao & Zhao, Laijun & Yi, Hongru & Cheng, Youfeng & Wang, Ke & Hu, Haisheng, 2024. "Cross-provincial collaborative transaction that considers both the green electricity and the green certificate markets under a renewable portfolio standard policy," Applied Energy, Elsevier, vol. 372(C).
    18. Song, Xiao-hua & Han, Jing-jing & Zhang, Lu & Zhao, Cai-ping & Wang, Peng & Liu, Xiao-yan & Li, Qiao-chu, 2021. "Impacts of renewable portfolio standards on multi-market coupling trading of renewable energy in China: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 159(C).
    19. Wang, Xinru & Long, Ruyin & Sun, Qingqing & Chen, Hong & Jiang, Shiyan & Wang, Yujie & Li, Qianwen & Yang, Shuhan, 2024. "Spatial spillover effects and driving mechanisms of carbon emission reduction in new energy demonstration cities," Applied Energy, Elsevier, vol. 357(C).
    20. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    21. Ma, Xiaochen & Pan, Yanchun & Zhang, Manzi & Ma, Jianhua & Yang, Wen, 2024. "Impact of carbon emission trading and renewable energy development policy on the sustainability of electricity market: A stackelberg game analysis," Energy Economics, Elsevier, vol. 129(C).
    22. Lan, Liuhan & Zhang, Xingping & Zhang, Youzhong, 2023. "Low carbon and efficiency oriented day-ahead joint electrical energy and ancillary services market clearing model for generation-side in China," Energy Economics, Elsevier, vol. 121(C).
    23. Feng, Huchen & Hu, Yu-Jie & Li, Chengjiang & Wang, Honglei, 2023. "Rolling horizon optimisation strategy and initial carbon allowance allocation model to reduce carbon emissions in the power industry: Case of China," Energy, Elsevier, vol. 277(C).
    24. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Assessing the policy synergy among power, carbon emissions trading and tradable green certificate market mechanisms on strategic GENCOs in China," Energy, Elsevier, vol. 278(PB).
    25. Zheng, Baoning & Bao, Zhejing & Yang, Li, 2023. "Design and equilibrium analysis of integrated market of ISO-led carbon emissions, green certificates and electricity considering their interplay," Energy Economics, Elsevier, vol. 126(C).
    26. Hu, Yu & Chi, Yuanying & Zhao, Hao & Zhou, Wenbing, 2022. "The development of renewable energy industry under renewable portfolio standards: From the perspective of provincial resource differences," Energy Policy, Elsevier, vol. 170(C).

  23. Rui Xie & Meng Niu & Bin Su & Jiali Ge, 2021. "Are global value chains merely global? The case of Chinese Provinces in global value chains," Applied Economics, Taylor & Francis Journals, vol. 53(32), pages 3778-3794, July.

    Cited by:

    1. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    2. Can Li & Qi He & Han Ji, 2023. "Can Global Value Chain Upgrading Promote Regional Economic Growth? Empirical Evidence and Mechanism Analysis Based on City-Level Panel Data in China," Sustainability, MDPI, vol. 15(15), pages 1-22, July.
    3. Lu, Yuxin & Sica, Edgardo & Wolszczak-Derlacz, Joanna, 2024. "Global value chains, wages, employment and labour production in China: A regional approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 124-142.

  24. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).

    Cited by:

    1. Cai, Xiang & Zhao, Xiaohui & Jiang, Cuiting & Zhang, Liguo, 2024. "China's foreign direct investments: Do they promote domestic green technology?," Journal of Policy Modeling, Elsevier, vol. 46(1), pages 60-74.
    2. Lifeng Chen & Fuxuan Guo & Lingyan Huang, 2023. "Impact of Foreign Direct Investment on Green Innovation: Evidence from China’s Provincial Panel Data," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    3. Shao, Yanmin & Li, Junlong & Zhang, Xueli, 2024. "Outward foreign direct investment and green technology innovation: A company and host country perspective," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    4. Wei, Jia & Wen, Jun & Wang, Xiao-Yang & Ma, Jie & Chang, Chun-Ping, 2023. "Green innovation, natural extreme events, and energy transition: Evidence from Asia-Pacific economies," Energy Economics, Elsevier, vol. 121(C).
    5. Wang, Mengjiao & Liu, Jianxu & Rahman, Sanzidur & Sun, Xiaoqi & Sriboonchitta, Songsak, 2023. "The effect of China’s outward foreign direct investment on carbon intensity of Belt and Road Initiative countries: A double-edged sword," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 792-808.
    6. Dian, Jie & Song, Tian & Li, Shenglan, 2024. "Facilitating or inhibiting? Spatial effects of the digital economy affecting urban green technology innovation," Energy Economics, Elsevier, vol. 129(C).
    7. Decai Tang & Zhangming Shan & Junxia He & Ziqian Zhao, 2022. "How Do Environmental Regulations and Outward Foreign Direct Investment Impact the Green Total Factor Productivity in China? A Mediating Effect Test Based on Provincial Panel Data," IJERPH, MDPI, vol. 19(23), pages 1-32, November.
    8. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    9. Xing Shi & Yujie Zeng & Yanrui Wu & Shuai Wang, 2023. "Outward Foreign Direct Investment and Green Innovation in Chinese Multinational Companies," Economics Discussion / Working Papers 23-05, The University of Western Australia, Department of Economics.
    10. Shi, Xing & Zeng, Yujie & Wu, Yanrui & Wang, Shuai, 2023. "Outward foreign direct investment and green innovation in Chinese multinational companies," International Business Review, Elsevier, vol. 32(5).
    11. Weisong Mi & Kaixu Zhao & Pei Zhang, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Green Innovation in China," Sustainability, MDPI, vol. 14(9), pages 1-27, April.
    12. Qi, Xiulin & Wu, Zhifang & Xu, Jinqing & Shan, Biaoan, 2023. "Environmental justice and green innovation: A quasi-natural experiment based on the establishment of environmental courts in China," Ecological Economics, Elsevier, vol. 205(C).

  25. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).

    Cited by:

    1. Liddle, Brantley, 2023. "Is timing everything? Assessing the evidence on whether energy/electricity demand elasticities are time-varying," Energy Economics, Elsevier, vol. 124(C).
    2. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.

  26. Zhang, Guoxing & Nuruzzaman, Md & Su, Bin, 2021. "Nexus between household energy consumption and economic growth in Bangladesh (1975–2018)," Energy Policy, Elsevier, vol. 156(C).

    Cited by:

    1. Wang, Qiang & Wang, Lili & Li, Rongrong, 2023. "Could trade protectionism reshape the nexus of energy-economy-environment? Insight from different income groups," Resources Policy, Elsevier, vol. 85(PA).
    2. Samina Alam & Kazi Sajedur Rahman & Md. Rokonuzzaman & P. Abdul Salam & Md. Sazal Miah & Narottam Das & Shahariar Chowdhury & Sittiporn Channumsin & Suwat Sreesawet & Manun Channumsin, 2022. "Selection of Waste to Energy Technologies for Municipal Solid Waste Management—Towards Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    3. Eldowma, Ibrahim Ahmed & Zhang, Guoxing & Su, Bin, 2023. "The nexus between electricity consumption, carbon dioxide emissions, and economic growth in Sudan (1971–2019)," Energy Policy, Elsevier, vol. 176(C).
    4. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).

  27. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).

    Cited by:

    1. Song, Xiang & Wang, Dingyu & Zhang, Xuantao & He, Yuan & Wang, Yong, 2022. "A comparison of the operation of China's carbon trading market and energy market and their spillover effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    3. Di Zhu & Yinghong Wang & Fenglin Zhang, 2022. "Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-20, October.
    4. Hu, Haisheng & Zhao, Laijun & Dong, Wanhao, 2023. "How to achieve the goal of carbon peaking by the energy policy? A simulation using the DCGE model for the case of Shanghai, China," Energy, Elsevier, vol. 278(PA).
    5. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    6. Li, Jianling & Zhao, Ziwen & Xu, Dan & Li, Peiquan & Liu, Yong & Mahmud, Md Apel & Chen, Diyi, 2023. "The potential assessment of pump hydro energy storage to reduce renewable curtailment and CO2 emissions in Northwest China," Renewable Energy, Elsevier, vol. 212(C), pages 82-96.
    7. Ma, Shaoyue & Man, Hecheng & Li, Xiao & Xu, Xiangbo & Sun, Mingxing & Xie, Minghui & Zhang, Linxiu, 2023. "How nonfarm employment drives the households’ energy transition: Evidence from rural China," Energy, Elsevier, vol. 267(C).
    8. Li, Kai & Tan, Xiujie & Yan, Yaxue & Jiang, Dalin & Qi, Shaozhou, 2022. "Directing energy transition toward decarbonization: The China story," Energy, Elsevier, vol. 261(PA).
    9. Zhu, Hongtao & Cao, Shuang & Su, Zimeng & Zhuang, Yang, 2024. "China's future energy vision: Multi-scenario simulation based on energy consumption structure under dual carbon targets," Energy, Elsevier, vol. 301(C).
    10. Wu, Liangpeng & Xu, Chengzhen & Zhu, Qingyuan & Zhou, Dequn, 2024. "Multiple energy price distortions and improvement of potential energy consumption structure in the energy transition," Applied Energy, Elsevier, vol. 362(C).
    11. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    12. Zhang, Tianhu & Wang, Fuxi & Gao, Yi & Liu, Yuanjun & Guo, Qiang & Zhao, Qingxin, 2023. "Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China," Energy, Elsevier, vol. 268(C).
    13. Ding, Wangwang & Du, Juntao & Kazancoglu, Yigit & Mangla, Sachin Kumar & Song, Malin, 2023. "Financial development and the energy net-zero transformation potential," Energy Economics, Elsevier, vol. 125(C).
    14. Hou, Fei & Zhong, Xiaoxing & Zanoni, Marco A.B. & Rashwan, Tarek L. & Torero, José L., 2024. "Multi-step scheme and thermal effects of coal smouldering under various oxygen-limited conditions," Energy, Elsevier, vol. 299(C).
    15. Qin, Fuli & Tong, Mingyu & Huang, Ying & Zhang, Yubo, 2024. "Modeling, prediction and analysis of natural gas consumption in China using a novel dynamic nonlinear multivariable grey delay model," Energy, Elsevier, vol. 305(C).
    16. Su, Xing & Xu, Zehan & Tian, Shaochen & Chen, Chaoyang & Huang, Yixiang & Geng, Yining & Chen, Junfeng, 2023. "Life cycle assessment of three typical solar energy utilization systems in different regions of China," Energy, Elsevier, vol. 278(C).
    17. Kai-Hua Wang & Jia-Min Kan & Cui-Feng Jiang & Chi-Wei Su, 2022. "Is Geopolitical Risk Powerful Enough to Affect Carbon Dioxide Emissions? Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    18. He, Weijun & Li, Wanyu & Wang, Chun & Wang, Siyuan & Yang, Yuantao, 2024. "Does energy resource misallocation affect energy utilization efficiency? Evidence from Chinese provincial panel data," Energy, Elsevier, vol. 288(C).

  28. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).

    Cited by:

    1. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    2. Gao, Cuixia & Tao, Simin & Su, Bin & Mensah, Isaac Adjei & Sun, Mei, 2023. "Exploring renewable energy trade coopetition relationships: Evidence from belt and road countries, 1996-2018," Renewable Energy, Elsevier, vol. 202(C), pages 196-209.
    3. Tiejun Dai & Yazhe Zhao, 2024. "Spatial-temporal Dynamics and Driving Forces of Provincial CO2 Emission Responsibilities in China from Multiple Perspectives," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(4), pages 1-7.
    4. Che, Shuai & Wang, Jun, 2022. "Can environmental regulation solve the carbon curse of natural resource dependence: Evidence from China," Resources Policy, Elsevier, vol. 79(C).
    5. Song Wang & Yixiao Wang & Chenxin Zhou & Xueli Wang, 2022. "Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China," IJERPH, MDPI, vol. 19(19), pages 1-31, September.
    6. Yu, Haijing & Shen, Shaowei & Han, Lei & Ouyang, Jian, 2024. "Spatiotemporal heterogeneities in the impact of the digital economy on carbon emission transfers in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    7. Fiza Shaheen & Muhammad Saeed Lodhi & Joanna Rosak-Szyrocka & Khalid Zaman & Usama Awan & Muhammad Asif & Waqas Ahmed & Maria Siddique, 2022. "Cleaner Technology and Natural Resource Management: An Environmental Sustainability Perspective from China," Clean Technol., MDPI, vol. 4(3), pages 1-23, June.
    8. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    9. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    10. Umar, Muhammad & Mirza, Nawazish & Hasnaoui, Jamila Abaidi & Rochoń, Małgorzata Porada, 2022. "The nexus of carbon emissions, oil price volatility, and human capital efficiency," Resources Policy, Elsevier, vol. 78(C).
    11. Jingcheng Li & Menggang Li & Tianyang Wang & Xiuqin Feng, 2023. "Analysis of the Low-Carbon Transition Effect and Development Pattern of Green Credit for Prefecture-Level Cities in the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-22, March.
    12. Shiqing Wang & Piling Sun & Huiying Sun & Qingguo Liu & Shuo Liu & Da Lu, 2022. "Spatiotemporal Variations of Carbon Emissions and Their Driving Factors in the Yellow River Basin," IJERPH, MDPI, vol. 19(19), pages 1-20, October.
    13. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    14. Liang, Longwu & Chen, Mingxing & Zhang, Xiaoping & Sun, Mingxing, 2024. "Understanding changes in household carbon footprint during rapid urbanization in China," Energy Policy, Elsevier, vol. 185(C).
    15. Xuemei Jia & Qing Liu & Jiahao Feng & Yuru Li & Lijun Zhang, 2023. "The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    16. Shao, Hanhua & Wang, Yaning & Wen, Huwei, 2024. "Investigating the carbon curse of natural resource dependence: A carbon trading scheme," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 769-783.
    17. Ran Yu & Zhangchi Wang & Yan Li & Zuhui Wen & Weijia Wang, 2023. "Does Population Aging Affect Carbon Emission Intensity by Regulating Labor Allocation?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.

  29. Zhu, Lei & Li, Li & Su, Bin, 2021. "The price-bidding strategy for investors in a renewable auction: An option games–based study," Energy Economics, Elsevier, vol. 100(C).

    Cited by:

    1. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    2. del Río, Pablo & Kiefer, Christoph P., 2023. "Academic research on renewable electricity auctions: Taking stock and looking forward," Energy Policy, Elsevier, vol. 173(C).
    3. Wang, Zhen & Lam, Jasmine Siu Lee & Huo, Jiazhen, 2024. "The bidding strategy for renewable energy auctions under government subsidies," Applied Energy, Elsevier, vol. 353(PB).
    4. Zhang, Mingming & Nie, Jinchen & Su, Bin & Liu, Liyun, 2024. "An option game model applicable to multi-agent cooperation investment in energy storage projects," Energy Economics, Elsevier, vol. 131(C).
    5. Alcorta, Peio & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Who bears the risk? Incentives for renewable electricity under strategic interaction between regulator and investors," Resource and Energy Economics, Elsevier, vol. 75(C).
    6. Antonio C. C. Perrelli & Eduardo A. Sodré & André V. R. N. Silva & Caarem D. S. Studzinski & Vinícius F. Silva & Dalton F. G. Filho & Armando T. Neto & Alex A. B. Santos, 2024. "Optimizing Price Markup: The Impact of Power Purchase Agreements and Energy Production Uncertainty on the Economic Performance of Onshore and Offshore Wind Farms," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 211-219, September.

  30. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).

    Cited by:

    1. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    2. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

  31. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).

    Cited by:

    1. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    2. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    3. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    4. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    5. Anastasia Soukhov & Ahmed Foda & Moataz Mohamed, 2022. "Electric Mobility Emission Reduction Policies: A Multi-Objective Optimization Assessment Approach," Energies, MDPI, vol. 15(19), pages 1-21, September.
    6. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).
    7. Say, Kelvin & Csereklyei, Zsuzsanna & Brown, Felix Gabriel & Wang, Changlong, 2024. "The economics of public transport electrification: The charging dilemma," Energy Economics, Elsevier, vol. 135(C).

  32. Zhu, Bangzhu & Zhang, Mengfan & Huang, Liqing & Wang, Ping & Su, Bin & Wei, Yi-Ming, 2020. "Exploring the effect of carbon trading mechanism on China's green development efficiency: A novel integrated approach," Energy Economics, Elsevier, vol. 85(C).

    Cited by:

    1. Ullah, Atta & Ullah, Saif & Pinglu, Chen & Khan, Saba, 2023. "Impact of FinTech, governance and environmental taxes on energy transition: Pre-post COVID-19 analysis of belt and road initiative countries," Resources Policy, Elsevier, vol. 85(PA).
    2. Haoran Zhang & Rongxia Zhang & Guomin Li & Wei Li & Yongrok Choi, 2020. "Has China’s Emission Trading System Achieved the Development of a Low-Carbon Economy in High-Emission Industrial Subsectors?," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    3. Dawei Huang & Gang Chen, 2022. "Can the Carbon Emissions Trading System Improve the Green Total Factor Productivity of the Pilot Cities?—A Spatial Difference-in-Differences Econometric Analysis in China," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    4. Zhang, Chongchong & Lin, Boqiang, 2024. "Impact of introducing Chinese certified emission reduction scheme to the carbon market: Promoting renewable energy," Renewable Energy, Elsevier, vol. 222(C).
    5. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    6. Rui Zhang & Yong Ma & Jie Ren, 2022. "Green Development Performance Evaluation Based on Dual Perspectives of Level and Efficiency: A Case Study of the Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 19(15), pages 1-24, July.
    7. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    9. Lin, Boqiang & Xu, Chongchong, 2024. "Reaping green dividend: The effect of China's urban new energy transition strategy on green economic performance," Energy, Elsevier, vol. 286(C).
    10. Liang Shen & Xiaodi Wang & Qinqin Liu & Yuyan Wang & Lingxue Lv & Rongyun Tang, 2021. "Carbon Trading Mechanism, Low-Carbon E-Commerce Supply Chain and Sustainable Development," Mathematics, MDPI, vol. 9(15), pages 1-26, July.
    11. Rui Cao & Yanling Xiao & Fengxue Yin, 2023. "Spatio-Temporal Evolution of High-Quality Development and the Impact of Carbon Emissions Trading Schemes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    12. Junfeng Zhang & Jianxu Liu & Jing Li & Yuyan Gao & Chuansong Zhao, 2021. "Green Development Efficiency and Its Influencing Factors in China’s Iron and Steel Industry," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    13. Qianqian Guo & Zhifang Su & Chaoshin Chiao, 2022. "Carbon emissions trading policy, carbon finance, and carbon emissions reduction: evidence from a quasi-natural experiment in China," Economic Change and Restructuring, Springer, vol. 55(3), pages 1445-1480, August.
    14. Heng Zhang & Ziwei Zhang & Keyuan Sun & Yutong Zou, 2023. "Emission Reduction Effect, Influencing Factors and Economic Impact of China’s Carbon Market: An Empirical Test Based on a Multi-Period DID Model," SAGE Open, , vol. 13(4), pages 21582440231, November.
    15. Yu, Xiang, 2023. "An assessment of the green development efficiency of industrial parks in China: Based on non-desired output and non-radial DEA model," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 81-88.
    16. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    17. Zhou, Anhua & Xin, Ling & Li, Jun, 2022. "Assessing the impact of the carbon market on the improvement of China's energy and carbon emission performance," Energy, Elsevier, vol. 258(C).
    18. Huan YAN & Xiaojing LI & Shuang MENG, 2023. "Global Value Chain Participation and Sustainable Growth: Evidence from China," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 5-20, June.
    19. Xingwei Li & Yicheng Huang & Xiangxue Li & Xiang Liu & Jingru Li & Jinrong He & Jiachi Dai, 2022. "How does the Belt and Road policy affect the level of green development? A quasi-natural experimental study considering the CO2 emission intensity of construction enterprises," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    20. Jiang, Qichuan & Ma, Xuejiao & Wang, Yun, 2021. "How does the one belt one road initiative affect the green economic growth?," Energy Economics, Elsevier, vol. 101(C).
    21. Liu, Feng & Lv, Tao & Meng, Yuan & Li, Cong & Hou, Xiaoran & Xu, Jie & Deng, Xu, 2023. "Potential analysis of BESS and CCUS in the context of China's carbon trading scheme toward the low-carbon electricity system," Renewable Energy, Elsevier, vol. 210(C), pages 462-471.
    22. Zhang, Dongyang & Kong, Qunxi & Wang, Yizhi & Vigne, Samuel A., 2023. "Exquisite workmanship through net-zero emissions? The effects of carbon emission trading policy on firms' export product quality," Energy Economics, Elsevier, vol. 123(C).
    23. Junaid Ashraf, 2024. "How do institutional factors affect sustainable development? A comparative analysis," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-24, April.
    24. Hu, Bo & Zhou, P., 2022. "Can the renewable power consumption guarantee mechanism help activate China's power trading market?," Energy, Elsevier, vol. 253(C).
    25. Lin, Boqiang & Zhou, Yicheng, 2021. "Does fiscal decentralization improve energy and environmental performance? New perspective on vertical fiscal imbalance," Applied Energy, Elsevier, vol. 302(C).
    26. Boqiang Lin & Chongchong Xu, 2024. "RETRACTED ARTICLE: Evaluating the effect of green fiscal policy on firm energy performance: evidence from China," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-29, April.
    27. Gu, Guangtong & Zheng, Haorong & Tong, Lingyun & Dai, Yaxian, 2022. "Does carbon financial market as an environmental regulation policy tool promote regional energy conservation and emission reduction? Empirical evidence from China," Energy Policy, Elsevier, vol. 163(C).
    28. Zhang, Shengling & Wang, Yao & Hao, Yu & Liu, Zhiwei, 2021. "Shooting two hawks with one arrow: Could China's emission trading scheme promote green development efficiency and regional carbon equality?," Energy Economics, Elsevier, vol. 101(C).
    29. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    30. Lin, Boqiang & Zhou, Yicheng, 2022. "Measuring the green economic growth in China: Influencing factors and policy perspectives," Energy, Elsevier, vol. 241(C).
    31. Liu, Yunqiang & Liu, Sha & Shao, Xiaoyu & He, Yanqiu, 2022. "Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China's carbon emissions trading policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    32. Jiaxin Wu & Hongjuan Yang & Tanveer Ahmed, 2023. "An assessment of the policy of poverty alleviation in continuous poverty-stricken areas: evidence from Yunnan Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9757-9777, September.
    33. Jinlin Li & Litai Chen & Ying Chen & Jiawen He, 2022. "Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(3), pages 616-629, April.
    34. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    35. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    36. Li Meng & Ke Wang & Taoyong Su & He He, 2022. "Carbon Emission Trading and Corporate Financing: Evidence from China," Energies, MDPI, vol. 15(14), pages 1-13, July.
    37. Dong, Zhaoyingzi & Xiao, Yue, 2024. "Carbon emissions trading policy and climate injustice: A study on economic distributional impacts," Energy, Elsevier, vol. 296(C).
    38. Jiquan Peng & Zihao Zhao & Lili Chen, 2022. "The Impact of High-Standard Farmland Construction Policy on Rural Poverty in China," Land, MDPI, vol. 11(9), pages 1-20, September.
    39. Xin Yao & Yuanyuan Cheng & Li Zhou & Malin Song, 2022. "Green efficiency performance analysis of the logistics industry in China: based on a kind of machine learning methods," Annals of Operations Research, Springer, vol. 308(1), pages 727-752, January.
    40. Qingyang Wu & Siyu Ren & Yao Hou & Zaoli Yang & Congyu Zhao & Xusheng Yao, 2024. "Easing financial constraints through carbon trading," Empirical Economics, Springer, vol. 67(2), pages 655-691, August.
    41. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    42. Jie Mi & Chuanpeng Yao & Xiaoyang Zhao & Fei Li, 2024. "Research on the Diffusion Mechanism of Green Technology Innovation Based on Enterprise Perception," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1981-2010, May.
    43. Chuang Li & Qingqing Liu & Qing Li & Hailing Wang, 2022. "Does Innovative Industrial Agglomeration Promote Environmentally-Friendly Development? Evidence from Chinese Prefecture-Level Cities," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    44. Jieli Hu & Tieli Wang, 2023. "Strategies of Participants in the Carbon Trading Market—An Analysis Based on the Evolutionary Game," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    45. Peizhu Xin & Min Zhao & Yang Bai, 2022. "Does the Belt and Road Initiative Promote Green Innovation Quality? Evidence from Chinese Cities," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    46. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    47. Di Zhou & Xiaoyu Liang & Ye Zhou & Kai Tang, 2020. "Does Emission Trading Boost Carbon Productivity? Evidence from China’s Pilot Emission Trading Scheme," IJERPH, MDPI, vol. 17(15), pages 1-16, July.

  33. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.

    Cited by:

    1. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    2. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    3. Marchioni, Andrea & Magni, Carlo Alberto & Baschieri, Davide, 2020. "Investment and financing perspectives for a solar photovoltaic project," MPRA Paper 107374, University Library of Munich, Germany.
    4. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    5. Xiaoxiang Xu & Mingqiu Liao, 2022. "Prediction of China’s Economic Structural Changes under Carbon Emission Constraints: Based on the Linear Programming Input–Output (LP-IO) Model," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    6. Zhang, Kai & Zhang, Yiyi & Xi, Shan & Liu, Jiefeng & Li, Jiashuo & Hou, Shengren & Chen, Bin, 2022. "Multi-objective optimization of energy-water nexus from spatial resource reallocation perspective in China," Applied Energy, Elsevier, vol. 314(C).
    7. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    8. Mirzaee, Ashkan & McGarvey, Ronald G. & Aguilar, Francisco X., 2024. "Feasibility of satisfying projected biopower demands in support of decarbonization interventions: A spatially-explicit cost optimization model applied to woody biomass in the eastern US," Energy Economics, Elsevier, vol. 136(C).
    9. Magni, Carlo Alberto & Marchioni, Andrea & Baschieri, Davide, 2022. "Impact of financing and payout policy on the economic profitability of solar photovoltaic plants," International Journal of Production Economics, Elsevier, vol. 244(C).
    10. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    11. Rahim, Sahar & Wang, Zhen & Ju, Ping, 2022. "Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review," Applied Energy, Elsevier, vol. 319(C).
    12. Wu, Zhuochun & Kang, Jidong & Mosteiro-Romero, Martín & Bartolini, Andrea & Ng, Tsan Sheng & Su, Bin, 2024. "A distributionally robust optimization model for building-integrated photovoltaic system expansion planning under demand and irradiance uncertainties," Applied Energy, Elsevier, vol. 372(C).
    13. Han Wang & Zhenghui Fu & Shulan Wang & Wenjie Zhang, 2021. "Analysis of CO 2 Emissions in the Whole Production Process of Coal-Fired Power Plant," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    14. Wang, Yizhong & Jeong, Sujong & Hang, Ye & Wang, Qunwei, 2024. "Multi-sector environmental efficiency and productivity: A general Leontief optimization method," Omega, Elsevier, vol. 126(C).
    15. Yanfeng Li & Yongping Li & Guohe Huang & Rubing Zheng, 2022. "Inter-Provincial Electricity Trading and Its Effects on Carbon Emissions from the Power Industry," Energies, MDPI, vol. 15(10), pages 1-20, May.

  34. Lafang Wang & Bin Zhang & Rui Xie & Bin Su, 2020. "The drivers of export value-added in China’s provinces: a multi-regional input–output model," Applied Economics, Taylor & Francis Journals, vol. 52(57), pages 6199-6214, December.

    Cited by:

    1. Lu, Yuxin & Sica, Edgardo & Wolszczak-Derlacz, Joanna, 2024. "Global value chains, wages, employment and labour production in China: A regional approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 124-142.
    2. Aixi Han & Ao Liu & Zhenshan Guo & Yi Liang & Li Chai, 2023. "Measuring Gains and Losses in Virtual Water Trade from Environmental and Economic Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(1), pages 195-209, May.

  35. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).

    Cited by:

    1. Xu, Jiuping & Yang, Guocan & Wang, Fengjuan & Shu, Kejing, 2022. "A provincial renewable portfolio standards-based distribution strategy for both power plant and user: A case study from Guangdong, China," Energy Policy, Elsevier, vol. 165(C).
    2. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    3. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    4. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    5. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    6. Yao, Yunting & Gao, Ciwei & Tian, Hongjie & Zhang, Huiling, 2020. "Review of mid-to long-term trading mechanism for renewable electricity consumption in Ningxia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Li, Tianyu & Gao, Ciwei & Chen, Tao & Jiang, Yu & Feng, Yingchun, 2022. "Medium and long-term electricity market trading strategy considering renewable portfolio standard in the transitional period of electricity market reform in Jiangsu, China," Energy Economics, Elsevier, vol. 107(C).
    8. Yu, Biying & Zhao, Zihao & Zhao, Guangpu & An, Runying & Sun, Feihu & Li, Ru & Peng, Xiaohan, 2021. "Provincial renewable energy dispatch optimization in line with Renewable Portfolio Standard policy in China," Renewable Energy, Elsevier, vol. 174(C), pages 236-252.
    9. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    10. Hailin Mu & Zhewen Pei & Hongye Wang & Nan Li & Ye Duan, 2022. "Optimal Strategy for Low-Carbon Development of Power Industry in Northeast China Considering the ‘Dual Carbon’ Goal," Energies, MDPI, vol. 15(17), pages 1-22, September.
    11. Dong, Zhuojia & Yu, Xianyu & Chang, Ching-Ter & Zhou, Dequn & Sang, Xiuzhi, 2022. "How does feed-in tariff and renewable portfolio standard evolve synergistically? An integrated approach of tripartite evolutionary game and system dynamics," Renewable Energy, Elsevier, vol. 186(C), pages 864-877.
    12. Hua, Ershi & Sun, Ruyi & Feng, Ping & Song, Lili & Han, Mengyao, 2024. "Optimizing onshore wind power installation within China via geographical multi-objective decision-making," Energy, Elsevier, vol. 307(C).
    13. Zhao, Chuandang & Wang, Fengjuan, 2024. "Economy-equity equilibrium based bi-level provincial renewable portfolio standard target allocation: Perspective from China," Energy, Elsevier, vol. 290(C).
    14. Haider Mahmood & Muhammad Shahid Hassan & Soumen Rej & Maham Furqan, 2023. "The Environmental Kuznets Curve and Renewable Energy Consumption: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 279-291, May.
    15. Han Wang & Zhenghui Fu & Shulan Wang & Wenjie Zhang, 2021. "Analysis of CO 2 Emissions in the Whole Production Process of Coal-Fired Power Plant," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    16. Yuanyuan He & Luxin Wan & Manli Zhang & Huijuan Zhao, 2022. "Regional Renewable Energy Installation Optimization Strategies with Renewable Portfolio Standards in China," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    17. He, Yong & Zeng, Zhaoai & Liao, Nuo, 2024. "Multi-objective optimization of regional power generation mix considering both carbon cap-and-trade mechanisms and renewable portfolio standards," Renewable Energy, Elsevier, vol. 231(C).
    18. Zhang, Alex Hongliang & Sirin, Selahattin Murat & Fan, Conglai & Bu, Maoliang, 2022. "An analysis of the factors driving utility-scale solar PV investments in China: How effective was the feed-in tariff policy?," Energy Policy, Elsevier, vol. 167(C).
    19. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    20. Bai, Bo & Wang, Yihan & Fang, Cong & Xiong, Siqin & Ma, Xiaoming, 2021. "Efficient deployment of solar photovoltaic stations in China: An economic and environmental perspective," Energy, Elsevier, vol. 221(C).

  36. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).

    Cited by:

    1. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    2. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    4. Loh, Jiong Rui & Bellam, Sreenivasulu, 2024. "Towards net zero: Evaluating energy security in Singapore using system dynamics modelling," Applied Energy, Elsevier, vol. 358(C).
    5. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    6. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    7. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    8. Yan Gao & Xin Wang & Liyan Zhang, 2023. "Serial Dynamics, Spatial Spillover and Common Factors of Carbon Emission Intensity in China’s Bohai Economic Rim," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    9. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    10. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    11. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  37. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).

    Cited by:

    1. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    2. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Ren, Yi-Shuai & Jiang, Yong & Narayan, Seema & Ma, Chao-Qun & Yang, Xiao-Guang, 2022. "Marketisation and rural energy poverty: Evidence from provincial panel data in China," Energy Economics, Elsevier, vol. 111(C).
    4. Chen, Yingwen & Wong, Christina W.Y. & Yang, Rui & Miao, Xin, 2021. "Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China," Energy, Elsevier, vol. 237(C).
    5. Lin, Boqiang & Wang, Siquan, 2024. "Sustainability of renewable energy in China: Enhanced strategic investment and displaced R&D expenditure," Energy Economics, Elsevier, vol. 131(C).
    6. Zeng, Ximei & Zhou, Zhongbao & Gong, Yeming & Liu, Wenbin, 2022. "A data envelopment analysis model integrated with portfolio theory for energy mix adjustment: Evidence in the power industry," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    7. Liu, Jing-Yue & Zhang, Yue-Jun, 2021. "Has carbon emissions trading system promoted non-fossil energy development in China?," Applied Energy, Elsevier, vol. 302(C).
    8. Jing‐Yue Liu & Yue‐Jun Zhang & Charles H. Cho, 2023. "Corporate environmental information disclosure and green innovation: The moderating effect of CEO visibility," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(6), pages 3020-3042, November.
    9. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).

  38. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).

    Cited by:

    1. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    2. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    3. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    4. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    5. Deng Yue & Apurbo Sarkar & Yu Cui & Lu Qian & Zhao Minjuan & Jiban Chandro Das, 2021. "Ecological compensation of grain trade within urban, rural areas and provinces in China: a prospect of a carbon transfer mechanism," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16688-16712, November.
    6. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    7. Zhao, Zhenyu & Zhang, Yao & Yang, Yujia & Yuan, Shuguang, 2022. "Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity," Energy, Elsevier, vol. 255(C).
    8. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    9. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    10. Feng-Fan Liao & Wun-Hwa Chen, 2021. "Will the Management Structure of Energy Administrators Affect the Achievement of the Electrical Efficiency Mandatory Target for Taiwan Factories?," Energies, MDPI, vol. 14(7), pages 1-14, April.
    11. Peng, Cheng & Chen, Heng & Lin, Chaoran & Guo, Shuang & Yang, Zhi & Chen, Ke, 2021. "A framework for evaluating energy security in China: Empirical analysis of forecasting and assessment based on energy consumption," Energy, Elsevier, vol. 234(C).
    12. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    13. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    14. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    15. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    16. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    17. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    18. Vo, Duc Hong & Vo, Long Hai & Ho, Chi Minh, 2022. "Regional convergence of nonrenewable energy consumption in Vietnam," Energy Policy, Elsevier, vol. 169(C).
    19. Wang, Qunwei & Zhou, Bo & Zhang, Cheng & Zhou, Dequn, 2021. "Do energy subsidies reduce fiscal and household non-energy expenditures? A regional heterogeneity assessment on coal-to-gas program in China," Energy Policy, Elsevier, vol. 155(C).
    20. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    21. Huang, Junbing & Lian, Shijia & Qu, Ran & Luan, Bingjiang & Wang, Yajun, 2023. "Investigating the role of enterprises' property rights in China's provincial industrial energy intensity," Energy, Elsevier, vol. 282(C).
    22. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    23. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
    24. Xuejing Zheng & Boxiao Xu & Shijun You & Huan Zhang & Yaran Wang & Leizhai Sun, 2020. "Energy Consumption and CO 2 Emissions of Coach Stations in China," Energies, MDPI, vol. 13(14), pages 1-22, July.
    25. Yu, Weihua & Liang, Wenjing & Yao, Xin, 2024. "The effect of the county-to-district conversion policy on energy efficiency of enterprises: Evidence from China," Energy Economics, Elsevier, vol. 134(C).
    26. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    27. Ma, Jianhong & Wang, Ning & Chen, Zihao & Wang, Libo & Xiong, Qiyang & Chen, Peilin & Zhang, Hongxia & Zheng, Ying & Chen, Zhan-Ming, 2024. "Accounting and decomposition of China's CO2 emissions 1981–2021," Applied Energy, Elsevier, vol. 375(C).

  39. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).

    Cited by:

    1. Shao, Yanmin & Li, Junlong & Zhang, Xueli, 2024. "Outward foreign direct investment and green technology innovation: A company and host country perspective," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    2. Halkos, George & Moll de Alba, Jaime & Todorov, Valentin, 2021. "Analyzing manufacturing sector and selected development challenges: A panel data analysis," Energy, Elsevier, vol. 235(C).
    3. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    4. Zhang, Wenyue & Li, Jianan & Sun, Chuanwang, 2022. "The impact of OFDI reverse technology spillovers on China's energy intensity: Analysis of provincial panel data," Energy Economics, Elsevier, vol. 116(C).
    5. Jiao, Jianling & Song, Jiangfeng & Ding, Tao, 2024. "The impact of synergistic development of renewable energy and digital economy on energy intensity: Evidence from 33 countries," Energy, Elsevier, vol. 295(C).
    6. Wang, You & Gong, Xu, 2022. "Analyzing the difference evolution of provincial energy consumption in China using the functional data analysis method," Energy Economics, Elsevier, vol. 105(C).
    7. Xu, Renjing & Xu, Bin, 2022. "Exploring the effective way of reducing carbon intensity in the heavy industry using a semiparametric econometric approach," Energy, Elsevier, vol. 243(C).
    8. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    9. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  40. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.

    Cited by:

    1. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    2. Yanjie Zhang & Wei Song & Shun Fu & Dazhi Yang, 2020. "Decoupling of Land Use Intensity and Ecological Environment in Gansu Province, China," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    3. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Guo, Zhengquan & Su, Shuai, 2021. "Segmented carbon tax may significantly affect the regional and national economy and environment-a CGE-based analysis for Guangdong Province," Energy, Elsevier, vol. 231(C).
    4. Nan Li & Beibei Shi & Rong Kang, 2021. "Information Disclosure, Coal Withdrawal and Carbon Emissions Reductions: A Policy Test Based on China’s Environmental Information Disclosure," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    5. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
    6. Neves, Sónia Almeida & Marques, António Cardoso, 2021. "The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Xueru Zhang & Jie Wang & Wei Song & Fengfei Wang & Xing Gao & Lei Liu & Kun Dong & Dazhi Yang, 2022. "Decoupling Analysis between Rural Population Change and Rural Construction Land Changes in China," Land, MDPI, vol. 11(2), pages 1-17, February.
    8. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    9. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    10. Wei, Wendong & Cai, Wenqiu & Guo, Yi & Bai, Caiquan & Yang, Luzhen, 2020. "Decoupling relationship between energy consumption and economic growth in China's provinces from the perspective of resource security," Resources Policy, Elsevier, vol. 68(C).
    11. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    12. Regueiro-Ferreira, Rosa María & Alonso-Fernández, Pablo, 2023. "Interaction between renewable energy consumption and dematerialization: Insights based on the material footprint and the Environmental Kuznets Curve," Energy, Elsevier, vol. 266(C).
    13. Liqiang Chen & Ming Gao, 2020. "The effects of three types of China's official turnover on air quality: A regression discontinuity study," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1081-1101, September.
    14. Yuanying Chi & Zerun Liu & Xu Wang & Yangyi Zhang & Fang Wei, 2021. "Provincial CO 2 Emission Measurement and Analysis of the Construction Industry under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 13(4), pages 1-15, February.

  41. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).

    Cited by:

    1. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    2. Feng Wang & Ge Wang & Juan Liu & Jing Ren & Mingru Dong, 2021. "Impact paths of land urbanization on haze pollution: spatial nesting structure perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 975-998, October.
    3. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    4. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Zhong, Jiarui & Pei, Jiansuo, 2022. "Beggar thy neighbor? On the competitiveness and welfare impacts of the EU's proposed carbon border adjustment mechanism," Energy Policy, Elsevier, vol. 162(C).
    6. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    7. Cheng, Xiu & Wu, Fan & Long, Ruyin & Li, Wenbo, 2021. "Uncovering the effects of learning capacity and social interaction on the experienced utility of low-carbon lifestyle guiding policies," Energy Policy, Elsevier, vol. 154(C).
    8. Zhuang, Mufan & Gao, Ziyan & Geng, Yong & Xiao, Shijiang, 2022. "Spatial distribution pattern of embodied natural resources use in China and its relationship with socioeconomic development: From an exergetic perspective," Resources Policy, Elsevier, vol. 79(C).
    9. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    10. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    11. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    12. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    14. Cheng Zhang & Ziwei Zhao & Qunwei Wang, 2022. "Effect of Western Development Strategy on carbon productivity and its influencing mechanisms," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4963-5002, April.
    15. Jiang, Meizhi & Wang, Benmei & Hao, Yingjun & Chen, Shijun & Wen, Yuanqiao & Yang, Zaili, 2024. "Quantification of CO2 emissions in transportation: An empirical analysis by modal shift from road to waterway transport in Zhejiang, China," Transport Policy, Elsevier, vol. 145(C), pages 177-186.
    16. Zheng, Shenglin & Yuan, Rong, 2023. "Sectoral convergence analysis of China's emissions intensity and its implications," Energy, Elsevier, vol. 262(PB).
    17. Andreoni, Valeria, 2022. "Drivers of coal consumption changes: A decomposition analysis for Chinese regions," Energy, Elsevier, vol. 242(C).
    18. Lin, Boqiang & Xu, Bin, 2021. "A non-parametric analysis of the driving factors of China's carbon prices," Energy Economics, Elsevier, vol. 104(C).
    19. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  42. Zhenhua Zhang & Guoxing Zhang & Shunfeng Song & Bin Su, 2020. "Spatial Heterogeneity Influences of Environmental Control and Informal Regulation on Air Pollutant Emissions in China," IJERPH, MDPI, vol. 17(13), pages 1-22, July.

    Cited by:

    1. Shuo Feng & Ke Chen, 2022. "Impact of Environmental Information Disclosure Policy and Trade on Chinese Paper Industry Environmental Effects," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    2. Ke Zhang & Jing Qian & Zhenhua Zhang & Shijiao Fang, 2023. "The Impact of Carbon Trading Pilot Policy on Carbon Neutrality: Empirical Evidence from Chinese Cities," IJERPH, MDPI, vol. 20(5), pages 1-23, March.
    3. Chengqing Liu & Dan Yang & Jun Sun & Yu Cheng, 2023. "The Impact of Environmental Regulations on Pollution and Carbon Reduction in the Yellow River Basin, China," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    4. Yinhao Wu & Shumin Yu & Xiangdong Duan, 2021. "The Impact of Environmental Regulation on the Location of Pollution-Intensive Industries in China under Agglomeration Effect," IJERPH, MDPI, vol. 18(8), pages 1-14, April.
    5. Masanari Watanabe & Hisashi Noma & Jun Kurai & Kazuhiro Kato & Hiroyuki Sano, 2021. "Association with Ambient Air Pollutants and School Absence Due to Sickness in Schoolchildren: A Case-Crossover Study in a Provincial Town of Japan," IJERPH, MDPI, vol. 18(12), pages 1-11, June.
    6. Zhang, Zhenhua & Zhang, Guoxing & Su, Bin, 2022. "The spatial impacts of air pollution and socio-economic status on public health: Empirical evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    7. Mei Feng & Chu Chen & Jia Liu & Wei Jia, 2022. "Does Central Environmental Protection Inspector Improve Corporate Social Responsibility? Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    8. Xuhui Ding & Yong Chen & Min Li & Narisu Liu, 2022. "Booster or Killer? Research on Undertaking Transferred Industries and Residents’ Well-Being Improvements," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    9. Caihua Zhou & Xinmin Zhang, 2020. "Measuring the Efficiency of Fiscal Policies for Environmental Pollution Control and the Spatial Effect of Fiscal Decentralization in China," IJERPH, MDPI, vol. 17(23), pages 1-19, December.
    10. Zhenhua Zhang & Guoxing Zhang & Yi Hu & Yating Jiang & Cheng Zhou & Jiahui Ma, 2023. "The evolutionary mechanism of haze collaborative governance: novel evidence from a tripartite evolutionary game model and a case study in China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    11. Dongling Wang & Yuming Zhang & Xiaoyi Zhang, 2022. "Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    12. Shi Wang & Wen Zhang & Hua Wang & Jue Wang & Mu-Jun Jiang, 2021. "How Does Income Inequality Influence Environmental Regulation in the Context of Corruption? A Panel Threshold Analysis Based on Chinese Provincial Data," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    13. Linyan Fan & Sheng Yao, 2022. "Analyst Site Visits and Corporate Environmental Information Disclosure: Evidence from China," IJERPH, MDPI, vol. 19(23), pages 1-21, December.
    14. Jianshi Wang & Yu Cheng & Chengxin Wang, 2022. "Environmental Regulation, Scientific and Technological Innovation, and Industrial Structure Upgrading in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    15. Bin He & Mengzhen Qi & Ning Wang & Zhenhua Zhang, 2022. "Avoiding Real Harm but False Good: The Influence Mechanism of Political Relations on the Effectiveness of Environmental Regulation Policies," IJERPH, MDPI, vol. 19(23), pages 1-16, November.

  43. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).

    Cited by:

    1. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    2. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    3. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    4. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    5. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    6. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    7. Adedayo Johnson Ogungbile & Geoffrey Qiping Shen & Ibrahim Yahaya Wuni & Jin Xue & Jingke Hong, 2021. "A Hybrid Framework for Direct CO 2 Emissions Quantification in China’s Construction Sector," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    8. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    9. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
    10. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    11. Niu, Meng & Wang, Zhenguo & Zhang, Yabin, 2022. "How information and communication technology drives (routine and non-routine) jobs: Structural path and decomposition analysis for China," Telecommunications Policy, Elsevier, vol. 46(1).
    12. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    13. Dong, Zhaoyingzi & Xiao, Yue, 2024. "Carbon emissions trading policy and climate injustice: A study on economic distributional impacts," Energy, Elsevier, vol. 296(C).
    14. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2023. "Can green tax policy promote China's energy transformation?— A nonlinear analysis from production and consumption perspectives," Energy, Elsevier, vol. 269(C).
    15. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    16. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    17. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    18. Lee, Chien-Chiang & Wang, Tianhui, 2024. "The impact of renewable energy policies on the energy transition -– An empirical analysis of Chinese cities," Energy Economics, Elsevier, vol. 138(C).

  44. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).

    Cited by:

    1. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    2. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    3. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    4. Xia, Quanzhi & Han, Mengyao & Guan, Shihui & Wu, Xiaofang & Zhang, Bo, 2022. "Tracking embodied energy flows of China's megacities via multi-scale supply chains," Energy, Elsevier, vol. 260(C).
    5. Zhang, Huiming & Xu, Lu & Zhou, Peng & Zhu, Xiaodong & Cudjoe, Dan, 2024. "Coordination between economic growth and carbon emissions: Evidence from 178 cities in China," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 164-180.
    6. Zhe Yang & Zhenwu Xiong & Wenhao Xue & Yuhong Zhou, 2022. "The Impact of Pollution Fee Reform on the Emission of Water Pollutants: Evidence from Manufacturing Enterprises in China," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    7. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    8. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).

  45. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).

    Cited by:

    1. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
    2. Tang, Songlin & Zhou, Wenbing & Li, Xinjin & Chen, Yingchao & Zhang, Qian & Zhang, Xiliang, 2021. "Subsidy strategy for distributed photovoltaics: A combined view of cost change and economic development," Energy Economics, Elsevier, vol. 97(C).
    3. Xu, Yue & Tian, Shu & Wang, Qingsong & Yuan, Xueliang & Ma, Qiao & Liu, Mengyue & Xu, Zhaopeng & Liu, Jixiang & Xu, Xiang & Liu, Chengqing, 2021. "Optimization path of energy-economy system from the perspective of minimum industrial structure adjustment," Energy, Elsevier, vol. 237(C).
    4. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    5. Lee, Chien-Chiang & Ho, Shan-Ju, 2022. "Impacts of export diversification on energy intensity, renewable energy, and waste energy in 121 countries: Do environmental regulations matter?," Renewable Energy, Elsevier, vol. 199(C), pages 1510-1522.
    6. Song, Xiaoxin & Li, Rongrong, 2023. "Tracing and excavating critical paths and sectors for embodied energy consumption in global supply chains: A case study of China," Energy, Elsevier, vol. 284(C).
    7. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    8. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    9. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    10. Xiaoheng Zhang & Keyu Bao & Zebin Liu & Li Yang, 2022. "Digital Finance, Industrial Structure, and Total Factor Energy Efficiency: A Study on Moderated Mediation Model with Resource Dependence," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    11. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    12. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    13. Mark Diesendorf & Steven Hail, 2022. "Funding of the Energy Transition by Monetary Sovereign Countries," Energies, MDPI, vol. 15(16), pages 1-14, August.
    14. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    15. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    16. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).

  46. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    3. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    4. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    5. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    6. Chen, Jiandong & Xie, Qiaoli & Shahbaz, Muhammad & Song, Malin & Li, Li, 2022. "Impact of bilateral trade on fossil energy consumption in BRICS: An extended decomposition analysis," Economic Modelling, Elsevier, vol. 106(C).
    7. Egidijus Norvaiša & Viktorija Bobinaitė & Inga Konstantinavičiūtė & Vaclovas Miškinis, 2024. "Energy Intensity Forecasting Models for Manufacturing Industries of “Catching Up” Economies: Lithuanian Case," Energies, MDPI, vol. 17(12), pages 1-34, June.
    8. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    9. Li-Ming Xue & Shuo Meng & Jia-Xing Wang & Lei Liu & Zhi-Xue Zheng, 2020. "Influential Factors Regarding Carbon Emission Intensity in China: A Spatial Econometric Analysis from a Provincial Perspective," Sustainability, MDPI, vol. 12(19), pages 1-26, October.
    10. Wang, Qiang & Song, Xiaoxin, 2021. "How UK farewell to coal – Insight from multi-regional input-output and logarithmic mean divisia index analysis," Energy, Elsevier, vol. 229(C).
    11. Shuangjie Xu & Hao Cheng & Menghan Zhang & Kexin Guo & Qian Liu & Yuan Gao, 2022. "Assessment and Adjustment of Export Embodied Carbon Emissions with Its Domestic Spillover Effects: Case Study of Liaoning Province, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    12. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    13. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).
    14. Kumar, Sourabh, 2023. "Evaluation and analysis of India's energy security: A policy perspective," Energy, Elsevier, vol. 278(PB).
    15. Zhang, Yu & Tian, Kailan & Li, Xiaomeng & Jiang, Xuemei & Yang, Cuihong, 2022. "From globalization to regionalization? Assessing its potential environmental and economic effects," Applied Energy, Elsevier, vol. 310(C).
    16. Valeriy V. Iosifov & Pavel D. Ratner, 2021. "Climate Policies of G20 and New Threats for Russian Energy and Transportation Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 478-486.

  47. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.

    Cited by:

    1. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    2. Xiao, Yilong & Ma, Teng & Fang, Yan Ru & Huang, Chen & Dai, Hancheng, 2024. "Disparity and driving forces of energy consumption in China's provincial urban residential sector under the carbon neutrality target," Energy, Elsevier, vol. 301(C).
    3. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.
    4. Xu, Yue & Wang, Qingsong & Tian, Shu & Liu, Mengyue & Zhang, Yujie & Yuan, Xueliang & Ma, Qiao & Liu, Chengqing, 2024. "How to promote CO2 reduction in urban households from a micro perspective?," Energy, Elsevier, vol. 293(C).
    5. Zhou, Jun & Yin, Zhichao & Yue, Pengpeng, 2023. "The impact of access to credit on energy efficiency," Finance Research Letters, Elsevier, vol. 51(C).
    6. Gao, Xue & Chen, Xuan & Liu, Lan-Cui, 2024. "Exploring the determinants of the evolution of urban and rural household carbon footprints inequality in China," Energy Policy, Elsevier, vol. 185(C).
    7. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    8. Yu Zhou & Caijiang Zhang & Zhangwen Li, 2023. "The impact of digital financial inclusion on household carbon emissions: evidence from China," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-21, December.
    9. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    10. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    11. Zhong, Honglin & Zhang, Xinyu & Shao, Xuan & Xiao, Jingyi & Tian, Peipei, 2024. "Dissecting household carbon and energy inequality: A decade's insight into regional disparities and urban-rural dynamics in China," Energy Policy, Elsevier, vol. 192(C).
    12. Jingfei Zhang & Lijun Zhang & Yaochen Qin & Xia Wang & Zhicheng Zheng, 2019. "Impact of Residential Self-Selection on Low-Carbon Behavior: Evidence from Zhengzhou, China," Sustainability, MDPI, vol. 11(23), pages 1-17, December.
    13. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China's CO2 emissions," Renewable Energy, Elsevier, vol. 201(P1), pages 418-425.
    14. Yamei Chen & Lu Jiang, 2022. "Influencing Factors of Direct Carbon Emissions of Households in Urban Villages in Guangzhou, China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    15. Long, Ruyin & Wang, Jiaqi & Chen, Hong & Li, Qianwen & Wu, Meifen & Tan-Soo, Jie-Sheng, 2023. "Applying multilevel structural equation modeling to energy-saving behavior: The interaction of individual- and city-level factors," Energy Policy, Elsevier, vol. 174(C).
    16. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    17. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    18. Yan Wu & Pim Martens & Thomas Krafft, 2022. "Public Awareness, Lifestyle and Low-Carbon City Transformation in China: A Systematic Literature Review," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    19. Jiachen Yue & Huasheng Zhu & Fei Yao, 2021. "Does Industrial Transfer Change the Spatial Structure of CO 2 Emissions?—Evidence from Beijing-Tianjin-Hebei Region in China," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    20. Li, Jiajia & Zhang, Jian & Zhang, Dayong & Ji, Qiang, 2019. "Does gender inequality affect household green consumption behaviour in China?," Energy Policy, Elsevier, vol. 135(C).
    21. Ai, Hongshan & Tan, Xiaoqing & Zhou, Shengwen & Liu, Wen, 2023. "The impact of supportive policy for resource-exhausted cities on carbon emission: Evidence from China," Resources Policy, Elsevier, vol. 85(PB).
    22. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    23. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    24. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    25. Jakučionytė-Skodienė, Miglė & Krikštolaitis, Ričardas & Liobikienė, Genovaitė, 2022. "The contribution of changes in climate-friendly behaviour, climate change concern and personal responsibility to household greenhouse gas emissions: Heating/cooling and transport activities in the Eur," Energy, Elsevier, vol. 246(C).
    26. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    27. Zhongyuan Li & Huixin Yu & Liyun Xing, 2023. "The impact of green culture on employees' green behavior: The mediation role of environmental awareness," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(3), pages 1325-1335, May.
    28. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    29. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.
    30. Wei Wu & Binxia Xue & Yan Song & Xujie Gong & Tao Ma, 2023. "Investigating the Impacts of Urban Built Environment on Travel Energy Consumption: A Case Study of Ningbo, China," Land, MDPI, vol. 12(1), pages 1-19, January.
    31. Hailin Xiao & Xiaocai Zhang, 2022. "The Market Disruption Path of Green-Oriented Trajectory-Transformed Technology Innovation: A Study of Consumer Lifestyles during the “Chasm” in China’s Electric Vehicle Market," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    32. An, Na & Huang, Chenyu & Shen, Yanting & Wang, Jinyu & Yu, Zhongqi & Fu, Jiayan & Liu, Xiao & Yao, Jiawei, 2024. "Efficient data-driven prediction of household carbon footprint in China with limited features," Energy Policy, Elsevier, vol. 185(C).
    33. Zhang, Wei & Li, Jing & Li, Guoxiang & Guo, Shucen, 2020. "Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China," Energy, Elsevier, vol. 196(C).
    34. Verma, Pramit & Kumari, Tanu & Raghubanshi, Akhilesh Singh, 2021. "Energy emissions, consumption and impact of urban households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    35. Wang, Jianlong & Wu, Haitao & Liu, Yong & Wang, Weilong, 2024. "Health welfare in the digital era: Exploring the impact of digital trade on residents' health," Economics & Human Biology, Elsevier, vol. 54(C).
    36. Zheng Wang & Shaojian Wang & Chuanhao Lu & Lei Hu, 2022. "Which Factors Influence the Regional Difference of Urban–Rural Residential CO 2 Emissions? A Case Study by Cross-Regional Panel Analysis in China," Land, MDPI, vol. 11(5), pages 1-19, April.
    37. Lia Marchi & Licia Felicioni & Francesca Sabatini & Lidia Errante, 2023. "Exploring Energy Literacy in Italian Social Housing: A Survey of Inhabitants Preparing the Ground for Climate Transition," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    38. Pedro J. Zarco-Periñán & Fco Javier Zarco-Soto & Irene M. Zarco-Soto & José L. Martínez-Ramos & Rafael Sánchez-Durán, 2022. "CO 2 Emissions in Buildings: A Synopsis of Current Studies," Energies, MDPI, vol. 15(18), pages 1-10, September.
    39. Yunxia Liu & Xunpeng Shi & Ya Ping Wang & Tao Sun, 2019. "Promoting Green Residential Buildings in China: Bridging the Gap between Design and Operation to Improve Occupants’ Residential Satisfaction," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    40. Jun Zhou & Zhichao Yin & Pengpeng Yue, 2022. "The impact of access to credit on energy efficiency," Papers 2211.08871, arXiv.org.
    41. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    42. Debin Fang & Peng Hao & Zhengxin Wang & Jian Hao, 2019. "Analysis of the Influence Mechanism of CO 2 Emissions and Verification of the Environmental Kuznets Curve in China," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
    43. Meng, Weilu & Yuan, Gecheng & Sun, Yongping, 2023. "Expansion of social networks and household carbon emissions: Evidence from household survey in China," Energy Policy, Elsevier, vol. 174(C).
    44. Lanre Olatomiwa & James Garba Ambafi & Umar Suleiman Dauda & Omowunmi Mary Longe & Kufre Esenowo Jack & Idowu Adetona Ayoade & Isah Ndakara Abubakar & Alabi Kamilu Sanusi, 2023. "A Review of Internet of Things-Based Visualisation Platforms for Tracking Household Carbon Footprints," Sustainability, MDPI, vol. 15(20), pages 1-32, October.
    45. Li, Hui & Li, Yue & Zheng, Guoliang & Zhou, You, 2024. "Interaction between household energy consumption and health: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    46. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    47. Hengzhou Xu & Xiaoyan Li, 2023. "Effect mechanism of Chinese-style decentralization on regional carbon emissions and policy improvement: evidence from China’s 12 urban agglomerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 474-505, January.
    48. Atsushi Watabe & Alice Marie Yamabe-Ledoux, 2023. "Low-Carbon Lifestyles beyond Decarbonisation: Toward a More Creative Use of the Carbon Footprinting Method," Sustainability, MDPI, vol. 15(5), pages 1-28, March.
    49. Xu, Dandan & Guo, Dongli & Yue, Pengpeng & Li, Mengshi, 2024. "Household green consumption: Does digital inclusion matter?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    50. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    51. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    52. Dayong Zhang & Jun Li & Qiang Ji & Shunsuke Managi, 2021. "Climate variations, culture and economic behaviour of Chinese households," Climatic Change, Springer, vol. 167(1), pages 1-18, July.
    53. Wu, Qingyang & Chang, Siqi & Bai, Caiquan & Wei, Wendong, 2023. "How do zombie enterprises hinder climate change action plans in China?," Energy Economics, Elsevier, vol. 124(C).
    54. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    55. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    56. Suling Feng & Junjie Liu & Dehui Xu, 2024. "Digital financial development and indirect household carbon emissions: empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23401-23435, September.
    57. Cheng, Qiongwen & Zhao, Xiaoge & Zhong, Shihu & Xing, Yudan, 2024. "Digital financial inclusion, resident consumption, and urban carbon emissions in China: A transaction cost perspective," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1336-1352.
    58. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    59. Khezri, Mohsen & Heshmati, Almas & Khodaei, Mehdi, 2022. "Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions," Applied Energy, Elsevier, vol. 306(PB).
    60. Yong Liu & Jin Liu & Yunpeng Su, 2021. "Low-Carbon Awareness and Behaviors: Effects of Exposure to Climate Change Impact Photographs," SAGE Open, , vol. 11(3), pages 21582440211, July.
    61. Du, Mengbing & Zhang, Xiaoling & Xia, Lang & Cao, Libin & Zhang, Zhe & Zhang, Li & Zheng, Heran & Cai, Bofeng, 2022. "The China Carbon Watch (CCW) system: A rapid accounting of household carbon emissions in China at the provincial level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    62. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    63. Jingbo Fan & Aobo Ran & Xiaomeng Li, 2019. "A Study on the Factors Affecting China’s Direct Household Carbon Emission and Comparison of Regional Differences," Sustainability, MDPI, vol. 11(18), pages 1-14, September.
    64. Kuokuo Zhao & Xuezhu Cui & Zhanhang Zhou & Peixuan Huang & Dongliang Li, 2021. "Exploring the Dependence and Influencing Factors of Carbon Emissions from the Perspective of Population Development," IJERPH, MDPI, vol. 18(21), pages 1-20, October.
    65. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    66. Andrew Pattison & Mathew Thomas Clement & Robert Habans, 2022. "The uneven weight of carbon on policy: towards a framework for understanding how greenhouse gas inventories can inform equitable climate policy design," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 12(1), pages 81-90, March.
    67. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).
    68. Du, Zhili & Xu, Jie & Lin, Boqiang, 2024. "What does the digital economy bring to household carbon emissions? – From the perspective of energy intensity," Applied Energy, Elsevier, vol. 370(C).

  48. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.

    Cited by:

    1. Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Li, Yaya & Zhang, Yun, 2023. "What is the role of green ICT innovation in lowering carbon emissions in China? A provincial-level analysis," Energy Economics, Elsevier, vol. 127(PA).
    3. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    5. Chris Belmert Milindi & Roula Inglesi-Lotz, 2021. "Impact of technological progress on carbon emissions in different country income groups," Working Papers 202123, University of Pretoria, Department of Economics.
    6. Wang, Jen Chun, 2022. "Understanding the energy consumption of information and communications equipment: A case study of schools in Taiwan," Energy, Elsevier, vol. 249(C).
    7. Khan, Yasir & Oubaih, Hana & Elgourrami, Fatima Zahra, 2022. "The effect of renewable energy sources on carbon dioxide emissions: Evaluating the role of governance, and ICT in Morocco," Renewable Energy, Elsevier, vol. 190(C), pages 752-763.
    8. Flavio Boccia & Daniela Covino, 2024. "Knowledge and Food Sustainability: the Metaverse as a New Economic-Environmental Paradigm," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 14841-14854, September.
    9. Danish, & Khan, Salahuddin & Haneklaus, Nils, 2023. "Sustainable economic development across globe: The dynamics between technology, digital trade and economic performance," Technology in Society, Elsevier, vol. 72(C).
    10. Favour Chidinma Onuoha & Benedict I. Uzoechina & Chukwunenye Ferguson Emekaraonye & Onyinye Ifeoma Ochuba & Nora Francis Inyang, 2023. "Information and communication technologies and sustainable development in ECOWAS subregion: Evidence from a panel cointegration analysis," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 787-806, March.
    11. Marta Gangolells & Miquel Casals & Marcel Macarulla & Núria Forcada, 2021. "Exploring the Potential of a Gamified Approach to Reduce Energy Use and Carbon Emissions in the Household Sector," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    12. Wadim Strielkowski & Olga Kovaleva & Tatiana Efimtseva, 2022. "Impacts of Digital Technologies for the Provision of Energy Market Services on the Safety of Residents and Consumers," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    13. Zhang, Kun & Zhu, Pei-Hua & Qian, Xiang-Yan, 2024. "National information consumption demonstration city construction and urban green development: A quasi-experiment from Chinese cities," Energy Economics, Elsevier, vol. 130(C).
    14. Jie Zhou & Hanlin Lan & Cheng Zhao & Jianping Zhou, 2021. "Haze Pollution Levels, Spatial Spillover Influence, and Impacts of the Digital Economy: Empirical Evidence from China," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    15. Wang, Jianda & Guo, Dongsheng, 2023. "Siphon and radiation effects of ICT agglomeration on green total factor productivity: Evidence from a spatial Durbin model," Energy Economics, Elsevier, vol. 126(C).
    16. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    17. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    18. Ashraf, Muhammad Zubair & Wei, Wei & Usman, Muhammad & Mushtaq, Shahid, 2024. "How can natural resource dependence, environmental-related technologies and digital trade protect the environment: Redesigning SDGs policies for sustainable environment?," Resources Policy, Elsevier, vol. 88(C).
    19. Zhang, Bing-bing & Wang, Yuan & Chen, Yue & Zhou, Junting, 2024. "Digital transformation by firms and the cleanliness of China's export products," Energy Economics, Elsevier, vol. 134(C).
    20. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    21. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    22. Lina Karabetyan, 2023. "Impact of Entrepreneurial Activity and ICT Development on Sustainable Development: Evidence from High-Income Countries," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    23. Keyong Zhang & Sulun Li & Peng Qin & Bohong Wang, 2022. "Spatial and Temporal Effects of Digital Technology Development on Carbon Emissions: Evidence from China," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    24. Olatunji Abdul Shobande, 2021. "Decomposing the Persistent and Transitory Effect of Information and Communication Technology on Environmental Impacts Assessment in Africa: Evidence from Mundlak Specification," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    25. Zhenzhen Liao & Shaofeng Ru & Yiyang Cheng, 2023. "A Simulation Study on the Impact of the Digital Economy on CO 2 Emission Based on the System Dynamics Model," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    26. Xue, Mingfu & Razzaq, Asif & Afshan, Sahar & Yang, Xiaodong, 2023. "Fiscal pressure and carbon intensity: A quasi-natural experiment based on education authority reform," Energy Economics, Elsevier, vol. 126(C).
    27. Jingwei Sun & Jingzhu Chen, 2023. "Digital Economy, Energy Structure Transformation, and Regional Carbon Dioxide Emissions," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    28. Guo, Qing & Wang, Hongsen & Lu, Xin & Qu, Long, 2024. "Effects of innovation environment on carbon intensity: The moderating role of information industry," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 967-977.
    29. Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    30. Ștefan Vlăduțescu & Georgiana Camelia Stănescu, 2023. "Environmental Sustainability of Metaverse: Perspectives from Romanian Developers," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    31. Ellen Thio & MeiXuen Tan & Liang Li & Muhammad Salman & Xingle Long & Huaping Sun & Bangzhu Zhu, 2022. "The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11226-11259, September.
    32. Recep Ulucak & Danish & Salah Ud‐Din Khan, 2020. "Does information and communication technology affect CO2 mitigation under the pathway of sustainable development during the mode of globalization?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 857-867, July.
    33. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    34. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    35. Boqiang Lin & Qianxiang Zhang, 2023. "Corporate environmental responsibility in polluting firms: Does digital transformation matter?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2234-2246, September.
    36. Khalil Nimer & Muath Abdelqader & Cemil Kuzey & Ali Uyar, 2024. "Emission targeting and carbon emissions: The moderating effect of female directors," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3480-3504, May.
    37. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    38. Geng Peng & Yixuan Tang & Kaiyou Tian, 2023. "Understanding the Nonlinear Impact of Information and Communication Technology on Carbon Emissions in the Logistics Industry of China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    39. Zhichuan Zhu & Bo Liu & Zhuoxi Yu & Jianhong Cao, 2022. "Effects of the Digital Economy on Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
    40. Zhang, Xudong & Song, Xueqian & Lu, Jianguang & Liu, Fei, 2022. "How financial development and digital trade affect ecological sustainability: The role of renewable energy using an advanced panel in G-7 Countries," Renewable Energy, Elsevier, vol. 199(C), pages 1005-1015.
    41. Qunwei Wang & Cheng Cheng & Dequn Zhou, 2020. "Multi-round auctions in an emissions trading system considering firm bidding strategies and government regulations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1403-1421, October.
    42. Xiong, Su & Luo, Rong, 2023. "Investigating the relationship between digital trade, natural resources, energy transition, and green productivity: Moderating role of R&D investment," Resources Policy, Elsevier, vol. 86(PB).
    43. Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    44. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    45. Zhang, Junjie & Yu, Shiwei & Xiong, Xingyi & Hu, Xing, 2024. "Impacts of ICT penetration shaping nonworking time use on indirect carbon emissions: Evidence from Chinese households," Energy Economics, Elsevier, vol. 129(C).
    46. Ke-Liang Wang & Rui-Rui Zhu & Yun-He Cheng, 2022. "Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China," Energies, MDPI, vol. 15(7), pages 1-21, April.
    47. Junjun Tang & Xing Zhao, 2023. "Does the new digital infrastructure improve total factor productivity?," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 895-916, October.
    48. Qian Zhang & Qizhen Wang, 2023. "Digitalization, Electricity Consumption and Carbon Emissions—Evidence from Manufacturing Industries in China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    49. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    50. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    51. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    52. Hazwan Haini, 2021. "Examining the impact of ICT, human capital and carbon emissions: Evidence from the ASEAN economies," International Economics, CEPII research center, issue 166, pages 116-125.
    53. Xuemei Jia & Qing Liu & Jiahao Feng & Yuru Li & Lijun Zhang, 2023. "The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    54. Wang, Xueting & Qiu, Feng & Zhang, Junbiao & Tong, Qingmeng, 2020. "Does Internet use help increase residents’ participation in programs to improve the dwelling environment? Evidence from China," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304234, Agricultural and Applied Economics Association.
    55. Niu, Meng & Wang, Zhenguo & Zhang, Yabin, 2022. "How information and communication technology drives (routine and non-routine) jobs: Structural path and decomposition analysis for China," Telecommunications Policy, Elsevier, vol. 46(1).
    56. Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2024. "Could the Russia-Ukraine war stir up the persistent memory of interconnectivity among Islamic equity markets, energy commodities, and environmental factors?," Research in International Business and Finance, Elsevier, vol. 69(C).
    57. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
    58. Wang, Lei & Ramsey, Thomas Stephen, 2024. "Digital divide and environmental pressure: A countermeasure on the embodied carbon emissions in FDI," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    59. Xu, Xiaofeng & Wei, Zhifei & Ji, Qiang & Wang, Chenglong & Gao, Guowei, 2019. "Global renewable energy development: Influencing factors, trend predictions and countermeasures," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    60. Oliver Lange & Julian Plath & Timo F. Dziggel & David F. Karpa & Mattis Keil & Tom Becker & Wolf H. Rogowski, 2022. "A Transparency Checklist for Carbon Footprint Calculations Applied within a Systematic Review of Virtual Care Interventions," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
    61. Zihanxin Li & Nuoyan Li & Huwei Wen, 2021. "Digital Economy and Environmental Quality: Evidence from 217 Cities in China," Sustainability, MDPI, vol. 13(14), pages 1-20, July.
    62. Zhong Ren & Jie Zhang, 2023. "Digital Economy, Clean Energy Consumption, and High-Quality Economic Development: The Case of China," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    63. Zaili Zhen & Lixin Tian, 2020. "The impact of climate damage function on the social cost of carbon and economic growth rate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1287-1304, October.
    64. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    65. Wang, Shubin & Li, Jiabao & Zhao, Erlong, 2024. "Exploring the role of financial technologies and digital trade in shaping trade-adjusted resource consumption in E7 countries," Resources Policy, Elsevier, vol. 88(C).
    66. Huang, Yongming & Zhang, Yanan, 2023. "Digitalization, positioning in global value chain and carbon emissions embodied in exports: Evidence from global manufacturing production-based emissions," Ecological Economics, Elsevier, vol. 205(C).
    67. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    68. Tao, Weiliang & Weng, Shimei & Chen, Xueli & ALHussan, Fawaz Baddar & Song, Malin, 2024. "Artificial intelligence-driven transformations in low-carbon energy structure: Evidence from China," Energy Economics, Elsevier, vol. 136(C).
    69. Balsalobre-Lorente, Daniel & Abbas, Jaffar & He, Chang & Pilař, Ladislav & Shah, Syed Ale Raza, 2023. "Tourism, urbanization and natural resources rents matter for environmental sustainability: The leading role of AI and ICT on sustainable development goals in the digital era," Resources Policy, Elsevier, vol. 82(C).
    70. Wen, Huwei & Wen, Changyong & Lee, Chien-Chiang, 2022. "Impact of digitalization and environmental regulation on total factor productivity," Information Economics and Policy, Elsevier, vol. 61(C).
    71. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    72. Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
    73. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    74. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    75. Kunkel, S. & Neuhäusler, P. & Matthess, M. & Dachrodt, M.F., 2023. "Industry 4.0 and energy in manufacturing sectors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    76. Lin, Boqiang & Xu, Bin, 2021. "A non-parametric analysis of the driving factors of China's carbon prices," Energy Economics, Elsevier, vol. 104(C).
    77. Zhao, Haoran & Guo, Sen, 2023. "Analysis of the non-linear impact of digital economy development on energy intensity: Empirical research based on the PSTR model," Energy, Elsevier, vol. 282(C).
    78. Ai, Hongshan & Wang, Mengyuan & Zhang, Yue-Jun & Zhu, Tian-Tian, 2022. "How does air pollution affect urban innovation capability? Evidence from 281 cities in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 166-178.

  49. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.

    Cited by:

    1. Ying Han & Baoling Jin & Xiaoyuan Qi & Huasen Zhou, 2021. "Influential Factors and Spatiotemporal Characteristics of Carbon Intensity on Industrial Sectors in China," IJERPH, MDPI, vol. 18(6), pages 1-18, March.
    2. Liao, Kaicheng & Liu, Juan, 2024. "Digital infrastructure empowerment and urban carbon emissions: Evidence from China," Telecommunications Policy, Elsevier, vol. 48(6).
    3. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    4. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    5. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    6. Jingyu Ji & Hang Lin, 2022. "Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-35, September.
    7. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    8. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    9. Paulo M. De Oliveira-De Jesus & John J. Galvis & Daniela Rojas-Lozano & Jose M. Yusta, 2020. "Multitemporal LMDI Index Decomposition Analysis to Explain the Changes of ACI by the Power Sector in Latin America and the Caribbean between 1990–2017," Energies, MDPI, vol. 13(9), pages 1-14, May.
    10. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    11. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    12. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    13. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    14. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).

  50. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, vol. 11(23), pages 1-28, November.

    Cited by:

    1. Haoyue Wu & Jin Tang & Hanjiao Huang & Wenkuan Chen & Yue Meng, 2021. "Net Carbon Sequestration Performance of Cropland Use in China’s Principal Grain-Producing Area: An Evaluation and Spatiotemporal Divergence," Land, MDPI, vol. 10(7), pages 1-19, July.
    2. Luis Antonio Galiano Bastarrica & Eva M. Buitrago Esquinas & María Ángeles Caraballo Pou & Rocío Yñiguez Ovando, 2023. "Environmental adjustment of the EU27 GDP: an econometric quantitative model," Environment Systems and Decisions, Springer, vol. 43(1), pages 115-128, March.
    3. Lucia Domaracká & Marcela Taušová & Katarína Čulková & Peter Tauš & Peter Gomboš, 2023. "Development of Greenhouse Gas Emission and Evaluation of Carbon Resource Use in Chosen EU Countries," Energies, MDPI, vol. 16(3), pages 1-17, January.

  51. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.

    Cited by:

    1. Yan, Yunfeng & Wang, Ran & Chen, Sida & Wang, Feifan & Zhao, Zhongxiu, 2022. "Mapping carbon footprint along global value chains: A study based on firm heterogeneity in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 398-408.
    2. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    4. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    5. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    6. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    7. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    8. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    9. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    10. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    11. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    12. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    13. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    14. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    15. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    16. Kekui Chen & Jianming Fu & Yun Gong & Jian Wang & Shilin Lv & Yajie Liu & Jingyun Li, 2022. "Study on the Influencing Factors of CO 2 from the Perspective of CO 2 Mitigation Potentials," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    17. Bin Wang & Dechun Huang & Chuanhao Fan & Zhencheng Xing, 2021. "Peak of SO 2 Emissions Embodied in International Trade: Patterns, Drivers and Implications," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    18. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    19. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    20. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).
    21. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    22. Jingke, Hong & Chenyu, Wang & Chang-Richards, Alice & Jingxiao, Zhang & Qiping, Geoffrey Shen & Bei, Qiao, 2022. "A spatiotemporal analysis of energy use pathways in the construction industry: A study of China," Energy, Elsevier, vol. 239(PC).
    23. Ortiz, Mateo & Cadarso, María-Ángeles & López, Luis-Antonio & Jiang, Xuemei, 2022. "The trade-off between the economic and environmental footprints of multinationals’ foreign affiliates," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 85-97.
    24. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    25. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Zhao, Zhongxiu & Jiao, Aodong, 2023. "Decomposing the carbon footprints of multinational enterprises along global value chains," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 13-28.
    26. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    27. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    28. Xu, Dongxiao & Zhang, Yan & Chen, Bin & Bai, Junhong & Liu, Gengyuan & Zhang, Boyu, 2022. "Identifying the critical paths and sectors for carbon transfers driven by global consumption in 2015," Applied Energy, Elsevier, vol. 306(PB).
    29. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    30. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    31. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    32. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    33. Niu, Meng & Wang, Zhenguo & Zhang, Yabin, 2022. "How information and communication technology drives (routine and non-routine) jobs: Structural path and decomposition analysis for China," Telecommunications Policy, Elsevier, vol. 46(1).
    34. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    35. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    36. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    37. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).
    38. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    39. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    40. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    41. Yanmei Li & Yue Wei & Xin Li & Liyuan Fu & Tianfa Xie & Siyan Liu & Yan Kang, 2024. "Carbon Emission Drivers and Critical Paths in the Interaction of the "Local-Domestic-International" Economic Cycle - A case study of Beijing," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(3), pages 1-6.
    42. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    43. Ma, Jianhong & Wang, Ning & Chen, Zihao & Wang, Libo & Xiong, Qiyang & Chen, Peilin & Zhang, Hongxia & Zheng, Ying & Chen, Zhan-Ming, 2024. "Accounting and decomposition of China's CO2 emissions 1981–2021," Applied Energy, Elsevier, vol. 375(C).

  52. Yuan, Jun & Nian, Victor & Su, Bin, 2019. "Evaluation of cost-effective building retrofit strategies through soft-linking a metamodel-based Bayesian method and a life cycle cost assessment method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Cited by:

    1. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    2. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2024. "Financial Aspects of Sustainable Rainwater Management in Small-Scale Urban Housing Communities," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    3. He, Qiong & Hossain, Md. Uzzal & Ng, S. Thomas & Augenbroe, Godfried, 2021. "Identifying practical sustainable retrofit measures for existing high-rise residential buildings in various climate zones through an integrated energy-cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Bragolusi, Paolo & D'Alpaos, Chiara, 2022. "The valuation of buildings energy retrofitting: A multiple-criteria approach to reconcile cost-benefit trade-offs and energy savings," Applied Energy, Elsevier, vol. 310(C).
    5. Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
    6. Jun Yuan & Haowei Wang & Szu Hui Ng & Victor Nian, 2020. "Ship Emission Mitigation Strategies Choice Under Uncertainty," Energies, MDPI, vol. 13(9), pages 1-20, May.
    7. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).
    8. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

  53. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).

    Cited by:

    1. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    2. Sisi Zhang & Xiaoyu Ma & Qi Cui & Jiamin Liu, 2024. "Digitalization and urban resilience: how does the allocation of digital factors affect urban resilience under energy constraints in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23613-23641, September.
    3. Dong, Kangyin & Dong, Xiucheng & Jiang, Qingzhe & Zhao, Jun, 2021. "Assessing energy resilience and its greenhouse effect: A global perspective," Energy Economics, Elsevier, vol. 104(C).
    4. Oppon, Eunice & Koh, S.C. Lenny & Eufrasio, Rafael, 2024. "Sustainability performance of enhanced weathering across countries: A triple bottom line approach," Energy Economics, Elsevier, vol. 136(C).
    5. Matsumoto, Ken'ichi & Matsumura, Yuko, 2022. "Challenges and economic effects of introducing renewable energy in a remote island: A case study of Tsushima Island, Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Vasconcellos, H.A.S. & Caiado Couto, L., 2021. "Estimation of socioeconomic impacts of wind power projects in Brazil's Northeast region using Interregional Input-Output Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

  54. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.

    Cited by:

    1. Chai, Shanglei & Zhang, Xichun & Abedin, Mohammad Zoynul & Chen, Huizheng & Lucey, Brian & Hajek, Petr, 2023. "An optimized GRT model with blockchain digital smart contracts for power generation enterprises," Energy Economics, Elsevier, vol. 128(C).
    2. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    3. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    4. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    5. Jia Liang & Yongpei Wang, 2024. "Recognizing the nexus between grid infrastructure, renewable energy, net interregional transmission and carbon emissions: Evidence from China," Growth and Change, Wiley Blackwell, vol. 55(1), March.
    6. Hailin Mu & Zhewen Pei & Hongye Wang & Nan Li & Ye Duan, 2022. "Optimal Strategy for Low-Carbon Development of Power Industry in Northeast China Considering the ‘Dual Carbon’ Goal," Energies, MDPI, vol. 15(17), pages 1-22, September.
    7. Li, Tianxiao & Li, Zheng & Li, Weiqi, 2020. "Scenarios analysis on the cross-region integrating of renewable power based on a long-period cost-optimization power planning model," Renewable Energy, Elsevier, vol. 156(C), pages 851-863.
    8. Jia, Min & Zhang, Zhe & Zhang, Li & Zhao, Liang & Lu, Xinbo & Li, Linyan & Ruan, Jianhui & Wu, Yunlong & He, Zhuoming & Liu, Mei & Jiang, Lingling & Gao, Yajing & Wu, Pengcheng & Zhu, Shuying & Niu, M, 2024. "Optimization of electricity generation and assessment of provincial grid emission factors from 2020 to 2060 in China," Applied Energy, Elsevier, vol. 373(C).
    9. Han Wang & Zhenghui Fu & Shulan Wang & Wenjie Zhang, 2021. "Analysis of CO 2 Emissions in the Whole Production Process of Coal-Fired Power Plant," Sustainability, MDPI, vol. 13(19), pages 1-13, October.
    10. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    11. Zhao, Wenhui & Zhang, Jiuyang & Li, Ruan & Zha, Ruiming, 2021. "A transaction case analysis of the development of generation rights trading and existing shortages in China," Energy Policy, Elsevier, vol. 149(C).
    12. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    13. Bai, Bo & Wang, Yihan & Fang, Cong & Xiong, Siqin & Ma, Xiaoming, 2021. "Efficient deployment of solar photovoltaic stations in China: An economic and environmental perspective," Energy, Elsevier, vol. 221(C).

  55. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.

    Cited by:

    1. Du, Qunyang & Li, Zhongyuan & Du, Min & Yang, Tianle, 2024. "Government venture capital and innovation performance in alternative energy production: The moderating role of environmental regulation and capital market activity," Energy Economics, Elsevier, vol. 129(C).
    2. Ben-Salha, Ousama & Mokni, Khaled, 2022. "Detrended cross-correlation analysis in quantiles between oil price and the US stock market," Energy, Elsevier, vol. 242(C).
    3. Qaisar Ali & Hakimah Yaacob & Shazia Parveen & Zaki Zaini, 2021. "Big data and predictive analytics to optimise social and environmental performance of Islamic banks," Environment Systems and Decisions, Springer, vol. 41(4), pages 616-632, December.
    4. Xun Liu & Xiaoliang Yu & Simon Gao, 2019. "A quantitative study of financing efficiency of low‐carbon companies: A three‐stage data envelopment analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 858-871, July.
    5. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    6. Joaquín Cañón-de-Francia & Concepión Garcés-Ayerbe, 2019. "Factors and Contingencies for the “It Pays to Be Green Hypothesis”. The European Union’s Emissions Trading System (EU ETS) and Financial Crisis as Contexts," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
    7. Zhang, Ruchuan & Gao, Weiyan & Chen, Shanshan & Zhou, Li & Li, Aijun, 2024. "Dose digital transformation contribute to improving financing efficiency? Evidence and implications for energy enterprises in China," Energy, Elsevier, vol. 300(C).
    8. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Can environmental regulation solve pollution problems? Theoretical model and empirical research based on the skill premium," Energy Economics, Elsevier, vol. 94(C).
    9. Yu, Xiaojun & Yao, Yao & Zheng, Huanhuan & Zhang, Lin, 2020. "The role of political connection on overinvestment of Chinese energy firms," Energy Economics, Elsevier, vol. 85(C).
    10. Xianrong Zhuang & Lingying Pan, 2022. "Study on the Impact of Clean Power Investment on Regional High-Quality Economic Development in China," Energies, MDPI, vol. 15(22), pages 1-23, November.
    11. Weiping Jia & Xianwen Jia & Ling Wu & Yanbing Guo & Teng Yang & Ermei Wang & Pan Xiao, 2022. "Research on regional differences of the impact of clean energy development on carbon dioxide emission and economic growth," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    12. Li, Lifang & Qiu, Lexin & Xu, Fangming & Zheng, Xinwei, 2023. "The impact of green credit on firms' green investment efficiency: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    13. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    14. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    15. Zhao, Qian & Qin, Chuan & Ding, Longfei & Cheng, Ying-Yue & Vătavu, Sorana, 2023. "Can green bond improve the investment efficiency of renewable energy?," Energy Economics, Elsevier, vol. 127(PB).
    16. Amin Jan & Maran Marimuthu & Rohail Hassan & Mehreen, 2019. "Sustainable Business Practices and Firm’s Financial Performance in Islamic Banking: Under the Moderating Role of Islamic Corporate Governance," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    17. Jingsheng Lei & Sha Lin & M. Riaz Khan & Siman Xie & Muhammad Sadiq & Rashid Ali & Muhammad Farhan Bashir & Luqman Shahzad & Sayed M. Eldin & Ali H. Amin, 2022. "Research Trends of Board Characteristics and Firms’ Environmental Performance: Research Directions and Agenda," Sustainability, MDPI, vol. 14(21), pages 1-25, November.
    18. Li, Hailing & Li, Yuxin & Zhang, Hua, 2023. "The spillover effects among the traditional energy markets, metal markets and sub-sector clean energy markets," Energy, Elsevier, vol. 275(C).
    19. Yang, Baochen & An, Haokai & Song, Xinyu, 2024. "Oil price uncertainty and corporate inefficient investment: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    20. Guoping Ding & Jingqian Hua & Juntao Duan & Sixia Deng & Wenyu Zhang & Yifan Gong & Huaping Sun, 2022. "Research on the Strategy of Industrial Structure Optimization Driven by Green Credit Distribution," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    21. Shan Yu & Qiang Hou & Jiayi Sun, 2020. "Investment Game Model Analysis of Emission-Reduction Technology Based on Cost Sharing and Coordination under Cost Subsidy Policy," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    22. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
    23. Hou, Fei & Tang, Wenjie & Wang, Huabing & Xiong, Hao, 2021. "Economic policy uncertainty, marketization level and firm-level inefficient investment: Evidence from Chinese listed firms in energy and power industries," Energy Economics, Elsevier, vol. 100(C).
    24. Su, Chi-Wei & Yuan, Xi & Umar, Muhammad & Chang, Tsangyao, 2022. "Dynamic price linkage of energies in transformation: Evidence from quantile connectedness," Resources Policy, Elsevier, vol. 78(C).
    25. Duan, Xiaoping & Xiao, Ya & Ren, Xiaohang & Taghizadeh-Hesary, Farhad & Duan, Kun, 2023. "Dynamic spillover between traditional energy markets and emerging green markets: Implications for sustainable development," Resources Policy, Elsevier, vol. 82(C).
    26. Pan, Yuling & Dong, Feng, 2022. "Dynamic evolution and driving factors of new energy development: Fresh evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    27. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    28. Yu, Shiwei & Lu, Tingwei & Hu, Xing & Liu, Lancui & Wei, Yi-Ming, 2021. "Determinants of overcapacity in China’s renewable energy industry: Evidence from wind, photovoltaic, and biomass energy enterprises," Energy Economics, Elsevier, vol. 97(C).
    29. Xu, Jin-Jin & Wang, Hai-Jie & Tang, Kai, 2022. "The sustainability of industrial structure on green eco-efficiency in the Yellow River Basin," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 775-788.
    30. Chang, Kai & Zeng, Yonghong & Wang, Weihong & Wu, Xin, 2019. "The effects of credit policy and financial constraints on tangible and research & development investment: Firm-level evidence from China's renewable energy industry," Energy Policy, Elsevier, vol. 130(C), pages 438-447.
    31. Shen, Huayu & Hou, Fei, 2021. "Trade policy uncertainty and corporate innovation evidence from Chinese listed firms in new energy vehicle industry," Energy Economics, Elsevier, vol. 97(C).
    32. Huaming Chen & Jia Liu & Ying Li & Yung-Ho Chiu & Tai-Yu Lin, 2019. "A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency," IJERPH, MDPI, vol. 16(9), pages 1-23, April.
    33. Liu, Liyun & Zhao, Zhenzhi & Zhang, Mingming & Zhou, Dequn, 2022. "Green investment efficiency in the Chinese energy sector: Overinvestment or underinvestment?," Energy Policy, Elsevier, vol. 160(C).
    34. Dobranschi, Marian & Nerudová, Danuše & Solilová, Veronika & Litzman, Marek, 2023. "An alternative measure of profit shifting and corporate income tax losses," Journal of Multinational Financial Management, Elsevier, vol. 70.
    35. Lianshui Li & Yang Cai & Liang Liu, 2019. "Research on the Effect of Urbanization on China’s Carbon Emission Efficiency," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    36. Veronese da Silva, Aline & Costa, Marcelo Azevedo & Lopes-Ahn, Ana Lúcia, 2022. "Accounting multiple environmental variables in DEA energy transmission benchmarking modelling: The 2019 Brazilian case," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    37. Wang, Zhaoxia & Zhu, Han & Ding, Yan & Zhu, Tianli & Zhu, Neng & Tian, Zhe, 2018. "Energy efficiency evaluation of key energy consumption sectors in China based on a macro-evaluating system," Energy, Elsevier, vol. 153(C), pages 65-79.
    38. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    39. Xiaohuan Lyu & Anna Shi, 2018. "Research on the Renewable Energy Industry Financing Efficiency Assessment and Mode Selection," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    40. John M. DeCicco, 2018. "Methodological Issues Regarding Biofuels and Carbon Uptake," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    41. Bai, Rui & Lin, Boqiang & Liu, Xiying, 2021. "Government subsidies and firm-level renewable energy investment: New evidence from partially linear functional-coefficient models," Energy Policy, Elsevier, vol. 159(C).
    42. Zacharoula Andreopoulou & Christiana Koliouska, 2018. "Benchmarking Internet Promotion of Renewable Energy Enterprises: Is Sustainability Present?," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    43. Alexey Cherepovitsyn & Tatiana Chvileva & Sergey Fedoseev, 2020. "Popularization of Carbon Capture and Storage Technology in Society: Principles and Methods," IJERPH, MDPI, vol. 17(22), pages 1-24, November.
    44. Cao, Hong & Guo, Litian & Zhang, Lin, 2020. "Does oil price uncertainty affect renewable energy firms’ investment? Evidence from listed firms in China," Finance Research Letters, Elsevier, vol. 33(C).
    45. Wang, Jiangyuan & Wang, Hua & Wang, Di, 2021. "Equity concentration and investment efficiency of energy companies in China: Evidence based on the shock of deregulation of QFIIs," Energy Economics, Elsevier, vol. 93(C).
    46. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    47. Apergis, Nicholas & Carmona-González, Nieves & Gil-Alana, Luis Alberiko, 2020. "Persistence in silver prices and the influence of solar energy," Resources Policy, Elsevier, vol. 69(C).
    48. Chang, Kai & Wan, Qiong & Lou, Qichun & Chen, Yili & Wang, Weihong, 2020. "Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China," Renewable Energy, Elsevier, vol. 151(C), pages 589-597.
    49. Zhou, Na & Wu, Qiaosheng & Hu, Xiangping & Xu, Deyi & Wang, Xiaolin, 2020. "Evaluation of Chinese natural gas investment along the Belt and Road Initiative using super slacks-based measurement of efficiency method," Resources Policy, Elsevier, vol. 67(C).
    50. Zhao, Zhibo & Shi, Xunpeng & Zhao, Lingdi & Zhang, Jinggu, 2020. "Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    51. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Moldovan, Nicoleta-Claudia, 2020. "Chinese renewable energy industries’ boom and recession: Evidence from bubble detection procedure," Energy Policy, Elsevier, vol. 138(C).
    52. Tu, Qiang & Mo, Jianlei & Betz, Regina & Cui, Lianbiao & Fan, Ying & Liu, Yu, 2020. "Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate," Energy Policy, Elsevier, vol. 144(C).
    53. Zhou, Pengfei & Luo, Jie & Cheng, Fei & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of risk priorities for renewable energy investment projects using a hybrid IT2 hesitant fuzzy decision-making approach with alpha cuts," Energy, Elsevier, vol. 224(C).
    54. Sylwia Myszograj & Dariusz Bocheński & Mirosław Mąkowski & Ewelina Płuciennik-Koropczuk, 2021. "Biogas, Solar and Geothermal Energy—The Way to a Net-Zero Energy Wastewater Treatment Plant—A Case Study," Energies, MDPI, vol. 14(21), pages 1-15, October.
    55. Zhang, Mingming & Pang, Zhichao & Liu, Liyun & Yang, Zikun & Zhou, Dequn, 2024. "Risk assessment of China's overseas energy investments considering the response ability to major risk events: A case study of COVID-19," Energy, Elsevier, vol. 288(C).
    56. Tian, Jinfang & Sun, Siyang & Cao, Wei & Bu, Di & Xue, Rui, 2024. "Make every dollar count: The impact of green credit regulation on corporate green investment efficiency," Energy Economics, Elsevier, vol. 130(C).
    57. Zhen, Wang & Xin-gang, Zhao & Ying, Zhou, 2021. "Biased technological progress and total factor productivity growth: From the perspective of China's renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    58. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    59. Antônio Carlos Pacagnella Júnior & Henrique Luiz da Silva & Wagner Wilson Bortoletto & Paulo Sergio de Arruda Ignacio, 2023. "Financial and environmental efficiency of CDM projects: Analysis and classification for investment decisions," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 926-941, March.

  56. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.

    Cited by:

    1. Wang, Kai-Hua & Liu, Lu & Zhong, Yifan & Lobonţ, Oana-Ramona, 2022. "Economic policy uncertainty and carbon emission trading market: A China's perspective," Energy Economics, Elsevier, vol. 115(C).
    2. Dai, Peng-Fei & Xiong, Xiong & Duc Huynh, Toan Luu & Wang, Jiqiang, 2022. "The impact of economic policy uncertainties on the volatility of European carbon market," Journal of Commodity Markets, Elsevier, vol. 26(C).
    3. Xinghua Fan & Ying Zhang & Jiuli Yin, 2018. "Evolutionary Analysis of a Three-Dimensional Carbon Price Dynamic System," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    4. Yue Xu & Dayu Zhai, 2022. "Impact of Changes in Membership on Prices of a Unified Carbon Market: Case Study of the European Union Emissions Trading System," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    5. Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    7. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "Dynamic linkages between international oil price, plastic stock index and recycle plastic markets in China," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 167-179.

  57. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.

    Cited by:

    1. Pan, Xian & Yu, Lihong, 2024. "Do China's pilot emissions trading schemes lead to domestic carbon leakage? Perspective from the firm relocation," Energy Economics, Elsevier, vol. 132(C).
    2. Clora, Francesco & Yu, Wusheng, 2021. "GHG emission, trade balance, and carbon leakage: insights from modeling thirty-one European decarbonization pathways towards 2050," Conference papers 333316, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Wen, Fenghua & Wu, Nan & Gong, Xu, 2020. "China's carbon emissions trading and stock returns," Energy Economics, Elsevier, vol. 86(C).
    4. Heng Zhang & Ziwei Zhang & Keyuan Sun & Yutong Zou, 2023. "Emission Reduction Effect, Influencing Factors and Economic Impact of China’s Carbon Market: An Empirical Test Based on a Multi-Period DID Model," SAGE Open, , vol. 13(4), pages 21582440231, November.
    5. Clora, Francesco & Yu, Wusheng & Corong, Erwin, 2023. "Alternative carbon border adjustment mechanisms in the European Union and international responses: Aggregate and within-coalition results," Energy Policy, Elsevier, vol. 174(C).
    6. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    7. Huiying Ye & Qi Zhang & Xunzhang Pan & Arash Farnoosh, 2020. "Market-induced carbon leakage in China’s certified emission reduction projects," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 987-1012, August.
    8. Alan Barrell & Pawel Dobrzanski & Sebastian Bobowski & Krzysztof Siuda & Szymon Chmielowiec, 2021. "Efficiency of Environmental Protection Expenditures in EU Countries," Energies, MDPI, vol. 14(24), pages 1-35, December.
    9. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    10. Siriwardana, Mahinda & Nong, Duy, 2021. "Nationally Determined Contributions (NDCs) to decarbonise the world: A transitional impact evaluation," Energy Economics, Elsevier, vol. 97(C).
    11. Zhou, Bo & Zhang, Cheng & Wang, Qunwei & Zhou, Dequn, 2020. "Does emission trading lead to carbon leakage in China? Direction and channel identifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Sun, YongPing & Xue, JinJun & Shi, XunPeng & Wang, KeYing & Qi, ShaoZhou & Wang, Lei & Wang, Cheng, 2019. "A dynamic and continuous allowances allocation methodology for the prevention of carbon leakage: Emission control coefficients," Applied Energy, Elsevier, vol. 236(C), pages 220-230.
    13. Pan, Wenqi & Kim, Man-Keun & Ning, Zhuo & Yang, Hongqiang, 2020. "Carbon leakage in energy/forest sectors and climate policy implications using meta-analysis," Forest Policy and Economics, Elsevier, vol. 115(C).
    14. Yongrok Choi, 2021. "Energy Efficiency and Urban Climate Adaption," Sustainability, MDPI, vol. 13(14), pages 1-7, July.
    15. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    16. Shuyang Chen & Mingyu Li & Can Wang, 2023. "The primary benefits of the Nationwide Emission Trading Scheme in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(8), pages 1-17, December.
    17. Yu, Ziling & Wang, Zhe & Ma, Mengjuan & Ma, Lili, 2024. "The impact of carbon leakage from energy-saving targets: A moderating effect based on new-energy model cities," Applied Energy, Elsevier, vol. 375(C).
    18. Wu, Qunli & Ma, Zhe & Meng, Fanxing, 2022. "Long-term impacts of carbon allowance allocation in China: An IC-DCGE model optimized by the hypothesis of imperfectly competitive market," Energy, Elsevier, vol. 241(C).
    19. Tian Lan & Ran Tao, 2024. "Research on the Inhibitory Effect of the EU’s Carbon Border Adjustment Mechanism on Carbon Leakage," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
    20. Xuyi Ding & Guangcheng Ma & Jianhua Cao, 2024. "The Emission-Reduction Effect of Green Demand Preference in Carbon Market and Macro-Environmental Policy: A DSGE Approach," Sustainability, MDPI, vol. 16(16), pages 1-36, August.
    21. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    22. Haiyan Shan & Junliang Yang & Guo Wei, 2019. "Industrial Symbiosis Systems: Promoting Carbon Emission Reduction Activities," IJERPH, MDPI, vol. 16(7), pages 1-23, March.
    23. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    24. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    25. Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).

  58. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.

    Cited by:

    1. Chen, Zhenni & Liu, Xi & Li, Jianglong, 2022. "Identifying channels of environmental impacts of transport sector through sectoral linkage analysis," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Wang, Zhenshuang & Xie, Wanchen & Zhang, Chengyi, 2023. "Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission," Resources Policy, Elsevier, vol. 81(C).
    3. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    4. Yamei Chen & Lu Jiang, 2022. "Influencing Factors of Direct Carbon Emissions of Households in Urban Villages in Guangzhou, China," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    5. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    6. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    7. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    8. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    9. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    10. Prantik Bagchi & Santosh Kumar Sahu & Ajay Kumar & Kim Hua Tan, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Post-Print hal-03628401, HAL.
    11. Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    13. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    14. Mardones, Cristian, 2023. "Economic and environmental effects of financing subsidies for non-conventional renewable energies with a carbon tax – A comparison of intersectoral models," Renewable Energy, Elsevier, vol. 217(C).
    15. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    16. Jiekun Song & Lina Jiang & Zeguo He & Zhicheng Liu & Xueli Leng, 2022. "Characteristics Analysis and Identification of Key Sectors of Air Pollutant Emissions in China from the Perspective of Complex Metabolic Network," IJERPH, MDPI, vol. 19(15), pages 1-28, July.
    17. Sun, Chen & Song, Junnian & Zhang, Dongqi & Wang, Xiaofan & Yang, Wei & Qi, Zhimin & Chen, Shaoqing, 2023. "Tracing urban carbon footprints differentiating supply chain complexity: A metropolis case," Energy, Elsevier, vol. 282(C).
    18. Ding, Yakui & Li, Yongping & Zheng, Heran & Meng, Jing & Lv, Jing & Huang, Guohe, 2022. "Identifying critical energy-water paths and clusters within the urban agglomeration using machine learning algorithm," Energy, Elsevier, vol. 250(C).
    19. Jiang, Qichuan & Ma, Xuejiao, 2021. "Spillovers of environmental regulation on carbon emissions network," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    20. Jia Liu & Jizu Li & Xilong Yao, 2019. "The Economic Effects of the Development of the Renewable Energy Industry in China," Energies, MDPI, vol. 12(9), pages 1-18, May.
    21. Yanmei Li & Yue Wei & Xin Li & Liyuan Fu & Tianfa Xie & Siyan Liu & Yan Kang, 2024. "Carbon Emission Drivers and Critical Paths in the Interaction of the "Local-Domestic-International" Economic Cycle - A case study of Beijing," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(3), pages 1-6.
    22. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    23. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).

  59. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.

    Cited by:

    1. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    3. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    4. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    5. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    6. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    7. Yumeng Mao & Xuemei Li, 2023. "A Review of Research on the Impact Mechanisms of Green Development in the Transportation Industry," Sustainability, MDPI, vol. 15(23), pages 1-26, December.
    8. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    9. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    10. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    11. Wu, Si & Hu, Shougeng & Frazier, Amy E., 2021. "Spatiotemporal variation and driving factors of carbon emissions in three industrial land spaces in China from 1997 to 2016," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    13. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    14. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    16. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    18. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.

  60. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.

    Cited by:

    1. Huang, Rui & Lv, Guonian, 2021. "The climate economic effect of technology spillover," Energy Policy, Elsevier, vol. 159(C).
    2. Chao Wang & Yue‐Jun Zhang, 2020. "Does environmental regulation policy help improve green production performance? Evidence from China's industry," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(2), pages 937-951, March.
    3. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Yayun Ren & Jian Yu & Shuhua Xu & Jiaomei Tang & Chang Zhang, 2023. "Green Finance and Industrial Low-Carbon Transition: Evidence from a Quasi-Natural Experiment in China," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    5. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    6. Fei Xu & Mian Yang & Qiangyi Li & Xiaolei Yang, 2020. "Long‐term economic consequences of corporate environmental responsibility: Evidence from heavily polluting listed companies in China," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2251-2264, September.
    7. Agnolucci, Paolo & Arvanitopoulos, Theodoros, 2019. "Industrial characteristics and air emissions: Long-term determinants in the UK manufacturing sector," Energy Economics, Elsevier, vol. 78(C), pages 546-566.
    8. Ruiwen Yang & Pathairat Pastpipatkul & Chaiwat Nimanussornkul, 2020. "Dynamic Volatility Spillover Among Chinese Black Series Futures Under Structural Breaks," International Journal of Business and Administrative Studies, Professor Dr. Bahaudin G. Mujtaba, vol. 6(5), pages 236-246.
    9. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    10. Ma, Yu & Zhang, Tingting & Qian, Wenyu & Wei, Danqi, 2022. "Financial development, demographic changes, and the growth of the non-hydro renewable energy Industry—An empirical test based on R&D and financing costs," Renewable Energy, Elsevier, vol. 185(C), pages 217-229.
    11. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    12. Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    14. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
    16. Li, Cunfang & Zhang, Bo & Lai, Yongzeng & Dong, Mei & Li, Danping, 2019. "Does the trans-regional transfer of resource-oriented enterprises generate a stress effect?," Resources Policy, Elsevier, vol. 64(C).
    17. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
    18. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    19. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    20. Huang, Junbing & Xiang, Shiqi & Wang, Yajun & Chen, Xiang, 2021. "Energy-saving R&D and carbon intensity in China," Energy Economics, Elsevier, vol. 98(C).
    21. Chen, Jiandong & Xu, Chong & Huang, Shuo & Shen, Zhiyang & Song, Malin & Wang, Shiqi, 2022. "Adjusted carbon intensity in China: Trend, driver, and network," Energy, Elsevier, vol. 251(C).
    22. Yan, Zheming & Zou, Baoling & Du, Kerui & Li, Ke, 2020. "Do renewable energy technology innovations promote China's green productivity growth? Fresh evidence from partially linear functional-coefficient models," Energy Economics, Elsevier, vol. 90(C).
    23. Xu, Chong & Wang, Bingjie & Chen, Jiandong & Shen, Zhiyang & Song, Malin & An, Jiafu, 2022. "Carbon inequality in China: Novel drivers and policy driven scenario analysis," Energy Policy, Elsevier, vol. 170(C).
    24. Zhang, Cheng & Zhao, Ziwei & Wang, Qunwei & Xu, Bing, 2022. "Title: Holistic governance strategy to reduce carbon intensity," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    25. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    26. Guo, Qing & Wang, Hongsen & Lu, Xin & Qu, Long, 2024. "Effects of innovation environment on carbon intensity: The moderating role of information industry," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 967-977.
    27. Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.
    28. Yunfei An & Dequn Zhou & Qunwei Wang, 2022. "Carbon emission reduction potential and its influencing factors in China’s coal-fired power industry: a cost optimization and decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3619-3639, March.
    29. Yongming Zhang & Mohsen Imeni & Seyyed Ahmad Edalatpanah, 2023. "Environmental Dimension of Corporate Social Responsibility and Earnings Persistence: An Exploration of the Moderator Roles of Operating Efficiency and Financing Cost," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    30. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    31. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    32. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
    33. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    34. Qunwei Wang & Cheng Cheng & Dequn Zhou, 2020. "Multi-round auctions in an emissions trading system considering firm bidding strategies and government regulations," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1403-1421, October.
    35. Cheng Peng & Xiaolin Guo & Hai Long, 2022. "Carbon Intensity and Green Transition in the Chinese Manufacturing Industry," Energies, MDPI, vol. 15(16), pages 1-20, August.
    36. Kuosmanen, Natalia & Maczulskij, Terhi, 2023. "The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing," IZA Discussion Papers 15865, Institute of Labor Economics (IZA).
    37. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
    38. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    39. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    40. Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).
    41. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    42. Meng Xu & Zhongfeng Qin & Yigang Wei, 2023. "Exploring the financing and allocating schemes for the Chinese Green Climate Fund," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2487-2508, March.
    43. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    44. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    45. Lei Li & Ruizeng Zhao & Feihua Huang, 2023. "Environmental Performance of China’s Industrial System Considering Technological Heterogeneity and Interaction," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    46. Rajesh Sharma & Muhammad Shahbaz & Pradeep Kautish & Xuan Vinh Vo, 2023. "Diversified imports as catalysts for ecological footprint: examining the BRICS experience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(4), pages 3153-3181, April.
    47. Wanke, Peter & Chen, Zhongfei & Dong, Qichen & Antunes, Jorge, 2021. "Transportation Sustainability, Macroeconomics, and Endogeneity in China: A Hybrid Neural-Markowitz-Variable Reduction Approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    48. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    49. Xu, Chong & Li, Zhiwen & Chen, Boyang & Yang, Qian & An, Jiafu, 2024. "Low-carbon development in China's transportation sector: Multidimensional characteristics and policy implications," Energy, Elsevier, vol. 289(C).
    50. Zhao, Zhibo & Shi, Xunpeng & Zhao, Lingdi & Zhang, Jinggu, 2020. "Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    51. Singpai, Bodin & Wu, Desheng Dash, 2021. "An integrative approach for evaluating the environmental economic efficiency," Energy, Elsevier, vol. 215(PB).
    52. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    53. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    54. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    55. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    56. Wang, Kunlun & Zheng, Leven J. & Zhang, Justin Zuopeng & Yao, Hongjiang, 2022. "The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China," Energy Economics, Elsevier, vol. 114(C).
    57. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    58. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    59. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    60. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    61. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    62. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    63. Lin, Boqiang & Xu, Bin, 2021. "A non-parametric analysis of the driving factors of China's carbon prices," Energy Economics, Elsevier, vol. 104(C).
    64. Lawrence D. LaPlue & Christopher A. Erickson, 2020. "Outsourcing, trade, technology, and greenhouse gas emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 217-245, April.
    65. Yousaf Ali & Rosita Pretaroli & Muhammad Sabir & Claudio Socci & Francesca Severini, 2020. "Structural changes in carbon dioxide (CO2) emissions in the United Kingdom (UK): an emission multiplier product matrix (EMPM) approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1545-1564, December.
    66. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.

  61. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.

    Cited by:

    1. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    2. Wu, Qingyang & Tan, Chang & Wang, Daoping & Wu, Yongtao & Meng, Jing & Zheng, Heran, 2023. "How carbon emission prices accelerate net zero: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 177(C).
    3. Yiyi Zhang & Shengren Hou & Jiefeng Liu & Hanbo Zheng & Jiaqi Wang & Chaohai Zhang, 2020. "Evolution of Virtual Water Transfers in China’s Provincial Grids and Its Driving Analysis," Energies, MDPI, vol. 13(2), pages 1-19, January.
    4. Felício, Laura & Henriques, Sofia Teives & Guevara, Zeus & Sousa, Tânia, 2024. "From electrification to decarbonization: Insights from Portugal's experience (1960–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    6. Pinto, Ricardo & Henriques, Sofia T. & Brockway, Paul E. & Heun, Matthew Kuperus & Sousa, Tânia, 2023. "The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition," Energy, Elsevier, vol. 269(C).
    7. Juyong Lee & Youngsang Cho & Jungwoo Shin, 2019. "A Study on the Optimal Ratio of Research and Development Investment in the Energy Sector: An Empirical Analysis in South Korea," Energies, MDPI, vol. 12(2), pages 1-12, January.
    8. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    9. Thomas G. Schrand, 2020. "Utopianism and the equity path to sustainability," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 10(4), pages 457-466, December.
    10. Tri Melda Mei Liana & Gloria J. M. Sianipar & Sunday Ade Sitorus & Heri Setiawan & Nunti Sibuea, 2024. "Indonesia’s Power Shift: Business Strategies for Renewable Energy and Social Justice," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 150-159, July.
    11. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.
    12. Laura Felício & Sofia T. Henriques & André Serrenho & Tiago Domingos & Tânia Sousa, 2019. "Insights from Past Trends in Exergy Efficiency and Carbon Intensity of Electricity: Portugal, 1900–2014," Energies, MDPI, vol. 12(3), pages 1-22, February.
    13. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    14. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    15. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    16. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    17. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    18. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    19. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    20. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
    21. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    22. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    23. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    24. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    25. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    26. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    27. Rodrigues, João F.D. & Wang, Juan & Behrens, Paul & de Boer, Paul, 2020. "Drivers of CO2 emissions from electricity generation in the European Union 2000–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

  62. Han, Lei & Han, Botang & Shi, Xunpeng & Su, Bin & Lv, Xin & Lei, Xiao, 2018. "Energy efficiency convergence across countries in the context of China’s Belt and Road initiative," Applied Energy, Elsevier, vol. 213(C), pages 112-122.

    Cited by:

    1. Zhu, Junpeng & Lin, Boqiang, 2022. "Economic growth pressure and energy efficiency improvement: Empirical evidence from Chinese cities," Applied Energy, Elsevier, vol. 307(C).
    2. Kai Hu & Dandan Li & Daqian Shi & Wenli Xu, 2023. "Environmental regulation and energy efficiency: evidence from daily penalty policy in China," Journal of Regulatory Economics, Springer, vol. 63(1), pages 1-29, April.
    3. Xingle Long & Chuanwang Sun & Chao Wu & Bin Chen & Kofi Agyenim Boateng, 2020. "Green innovation efficiency across China’s 30 provinces: estimate, comparison, and convergence," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1243-1260, October.
    4. Wang, Na & Fu, Xiaodong & Wang, Shaobin & Yang, Hao & Li, Zhen, 2022. "Convergence characteristics and distribution patterns of residential electricity consumption in China: An urban-rural gap perspective," Energy, Elsevier, vol. 254(PB).
    5. Lili Sun & Hang Yu & Qiang Liu & Yanzun Li & Lintao Li & Hua Dong & Caspar Daniel Adenutsi, 2022. "Identifying the Key Driving Factors of Carbon Emissions in ‘Belt and Road Initiative’ Countries," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    6. Feng, Yidai & Liu, Yaobin & Yuan, Huaxi, 2022. "The spatial threshold effect and its regional boundary of new-type urbanization on energy efficiency," Energy Policy, Elsevier, vol. 164(C).
    7. Liguo Zhang & Cuiting Jiang & Xiang Cai & Jun Wu, 2023. "Dynamic linkages between China’s OFDI, transport, and green economic growth: Empirical evidence from the B&R countries," Energy & Environment, , vol. 34(7), pages 2642-2667, November.
    8. Wang, Xueqin & Wong, Yiik Diew & Yuen, Kum Fai & Li, Kevin X., 2020. "Environmental governance of transportation infrastructure under Belt and Road Initiative: A unified framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 189-199.
    9. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    10. Chen, Yingtong & Zhang, Dayong & Ji, Qiang, 2022. "Impacts of regional cooperation agreements on international tourism: Evidence from a quasi-natural experiment," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 663-676.
    11. Weiwei Xiao & Qihang Xue & Xing Yi, 2023. "Does the Belt and Road Initiative promote international innovation cooperation?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    12. Zhao, Nan & Liu, Xiaojie & Pan, Changfeng & Wang, Chenyang, 2021. "The performance of green innovation: From an efficiency perspective," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    13. Shichun Xu & Yiwen Li & Yuan Tao & Yan Wang & Yunfan Li, 2020. "Regional Differences in the Spatial Characteristics and Dynamic Convergence of Environmental Efficiency in China," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    14. Yu, Chenyang & Tan, Yuanfang & Zhou, Yu & Zang, Chuanxiang & Tu, Chenglin, 2022. "Can functional urban specialization improve industrial energy efficiency? Empirical evidence from China," Energy, Elsevier, vol. 261(PA).
    15. Rubiat Saimum, 2020. "The Prospect of Belt and Road Initiative in the Context of Bangladesh," China Report, , vol. 56(4), pages 464-483, November.
    16. Yan Liu & Xunpeng Shi & James Laurenceson, 2018. "Are China's Exports Crowding Out or Being Crowded Out? Evidence from Japan's Imports," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 26(4), pages 1-23, July.
    17. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    18. Yan Wu & Cong Hu & Xunpeng Shi, 2021. "Heterogeneous Effects of the Belt and Road Initiative on Energy Efficiency in Participating Countries," Energies, MDPI, vol. 14(18), pages 1-21, September.
    19. Benye Shi & Tian Cai, 2020. "Has China’s Oil Investment in Belt and Road Initiative Countries Helped Its Oil Import?," Energies, MDPI, vol. 13(12), pages 1-13, June.
    20. Zixia Xiang & Yanhong Yin & Yuanwen He, 2018. "A Microeconomic Methodology to Evaluate Energy Efficiency by Consumption Behaviors and Strategies to Improve Energy Efficiency," Sustainability, MDPI, vol. 10(11), pages 1-11, November.
    21. Ren, Xiaohang & Xiao, Ya & Xiao, Shitong & Jin, Yi & Taghizadeh-Hesary, Farhad, 2024. "The effect of climate vulnerability on global carbon emissions: Evidence from a spatial convergence perspective," Resources Policy, Elsevier, vol. 90(C).
    22. Yevheniia Ziabina & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko & Yana Us, 2023. "Convergence of Energy Policies between the EU and Ukraine under the Green Deal Policy," Energies, MDPI, vol. 16(2), pages 1-19, January.
    23. Yuan, Qianqian & Baležentis, Tomas & Shen, Zhiyang & Streimikiene, Dalia, 2021. "Economic and environmental performance of the belt and road countries under convex and nonconvex production technologies," Journal of Asian Economics, Elsevier, vol. 75(C).
    24. Fan, Di & Peng, Bo & Wu, Jianxin & Zhang, ZhongXiang, 2024. "The convergence of total-factor energy efficiency across Chinese cities: A distribution dynamics approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 406-416.
    25. Jiang, Zhengyu & Zhang, Xinyi & Zhao, Yingzhi & Li, Chengming & Wang, Zeyu, 2023. "The impact of urban digital transformation on resource sustainability: Evidence from a quasi-natural experiment in China," Resources Policy, Elsevier, vol. 85(PA).
    26. Zhao, Yabo & Liu, Xiaofeng & Wang, Shaojian & Ge, Yuejing, 2019. "Energy relations between China and the countries along the Belt and Road: An analysis of the distribution of energy resources and interdependence relationships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 133-144.
    27. Qin Shu & Yang Su & Hong Li & Feng Li & Yunjie Zhao & Chen Du, 2023. "Study on the Spatial Structure and Drivers of Agricultural Carbon Emission Efficiency in Belt and Road Initiative Countries," Sustainability, MDPI, vol. 15(13), pages 1-27, July.
    28. Fan, Qiufang & Liu, Jintao & Zhang, Tao & Liu, Haomin, 2022. "An Evaluation of the Efficiency of China’s green investment in the “Belt and Road” countries," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 496-511.
    29. Yang, Shenglang & Shi, Xunpeng, 2018. "Intangible capital and sectoral energy intensity: Evidence from 40 economies between 1995 and 2007," Energy Policy, Elsevier, vol. 122(C), pages 118-128.
    30. Mateusz Jankiewicz, 2021. "The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach," Energies, MDPI, vol. 14(24), pages 1-15, December.
    31. Lingduo Jiang & Guofeng Zhang & Hang Zhang, 2023. "The role of the Belt and Road Initiative: New opportunity for Chinese exporters?," The World Economy, Wiley Blackwell, vol. 46(6), pages 1609-1647, June.
    32. Castellanos-Sosa, Francisco A. & Cabral, René & Mollick, André Varella, 2022. "Energy reform and energy consumption convergence in Mexico: A spatial approach," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 336-350.
    33. Gengyuan Liu & Asim Nawab & Fanxin Meng & Aamir Mehmood Shah & Xiaoya Deng & Yan Hao & Biagio F. Giannetti & Feni Agostinho & Cecília M. V. B. Almeida & Marco Casazza, 2021. "Understanding the Sustainability of the Energy–Water–Land Flow Nexus in Transnational Trade of the Belt and Road Countries," Energies, MDPI, vol. 14(19), pages 1-19, October.
    34. Ren, Xiaohang & Yang, Wanping & Jin, Yi, 2024. "Geopolitical risk and renewable energy consumption: Evidence from a spatial convergence perspective," Energy Economics, Elsevier, vol. 131(C).
    35. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    36. Zhiyu Fang & Ling Jiang & Zhong Fang, 2021. "Does Economic Policy Intervention Inhibit the Efficiency of China’s Green Energy Economy?," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
    37. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    38. Xiangdong Zhu & Zhutong Gu & Canfei He & Wei Chen, 2024. "The impact of the belt and road initiative on Chinese PV firms’ export expansion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25763-25783, October.
    39. Wu, Yunna & Wang, Jing & Ji, Shaoyu & Song, Zixin, 2020. "Renewable energy investment risk assessment for nations along China’s Belt & Road Initiative: An ANP-cloud model method," Energy, Elsevier, vol. 190(C).
    40. Yan Wu & Chunlai Chen & Cong Hu, 2021. "Does the Belt and Road Initiative Increase the Carbon Emission Intensity of Participating Countries?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(3), pages 1-25, May.
    41. Ye, Chusheng & Ye, Qin & Shi, Xunpeng & Sun, Yongping, 2020. "Technology gap, global value chain and carbon intensity: Evidence from global manufacturing industries," Energy Policy, Elsevier, vol. 137(C).
    42. Yanmei Li & Xiushan Bai, 2022. "How Can China and the Belt and Road Initiative Countries Work Together Responding to Climate Change: A Perspective on Carbon Emissions and Economic Spillover Effects," IJERPH, MDPI, vol. 19(15), pages 1-17, August.
    43. Huaping Sun & Bless Kofi Edziah & Xiaoqian Song & Anthony Kwaku Kporsu & Farhad Taghizadeh-Hesary, 2020. "Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis," Energies, MDPI, vol. 13(15), pages 1-19, July.
    44. Nugent, Jeffrey B. & Lu, Jiaxuan, 2021. "China's outward foreign direct investment in the Belt and Road Initiative: What are the motives for Chinese firms to invest?," China Economic Review, Elsevier, vol. 68(C).
    45. Han, Feng & Xie, Rui & Fang, Jiayu, 2018. "Urban agglomeration economies and industrial energy efficiency," Energy, Elsevier, vol. 162(C), pages 45-59.
    46. Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    47. Zhiheng Wu & Guisheng Hou & Baogui Xin, 2020. "Has the Belt and Road Initiative Brought New Opportunities to Countries Along the Routes to Participate in Global Value Chains?," SAGE Open, , vol. 10(1), pages 21582440209, January.
    48. Qi, Shaozhou & Peng, Huarong & Zhang, Xiaoling & Tan, Xiujie, 2019. "Is energy efficiency of Belt and Road Initiative countries catching up or falling behind? Evidence from a panel quantile regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    49. Zhao, Zhibo & Shi, Xunpeng & Zhao, Lingdi & Zhang, Jinggu, 2020. "Extending production-theoretical decomposition analysis to environmentally sensitive growth: Case study of Belt and Road Initiative countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    50. Zhu, Junpeng & Lin, Boqiang, 2020. "Convergence analysis of city-level energy intensity in China," Energy Policy, Elsevier, vol. 139(C).
    51. Singpai, Bodin & Wu, Desheng Dash, 2021. "An integrative approach for evaluating the environmental economic efficiency," Energy, Elsevier, vol. 215(PB).
    52. Yue-Jun Zhang & Yan-Lin Jin & Bo Shen, 2020. "Measuring the Energy Saving and CO2 Emissions Reduction Potential Under China’s Belt and Road Initiative," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1095-1116, April.
    53. Seyedashkan Madani, 2021. "The BRI and its Implications for China s Energy Security: The Four As Model Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 549-559.
    54. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    55. Zhang, Jing, 2019. "Oil and gas trade between China and countries and regions along the ‘Belt and Road’: A panoramic perspective," Energy Policy, Elsevier, vol. 129(C), pages 1111-1120.
    56. Li Xie & Chunlin Chen & Yihua Yu, 2019. "Dynamic Assessment of Environmental Efficiency in Chinese Industry: A Multiple DEA Model with a Gini Criterion Approach," Sustainability, MDPI, vol. 11(8), pages 1-22, April.
    57. Zhang, Shun & Liu, Xuyi, 2019. "The roles of international tourism and renewable energy in environment: New evidence from Asian countries," Renewable Energy, Elsevier, vol. 139(C), pages 385-394.
    58. Xiaohui Sun & Jianbo Gao & Bin Liu & Zhenzhen Wang, 2021. "Big Data-Based Assessment of Political Risk along the Belt and Road," Sustainability, MDPI, vol. 13(7), pages 1-20, April.
    59. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    60. Yang, Bo & Swe, Thidar & Chen, Yixuan & Zeng, Chunyuan & Shu, Hongchun & Li, Xin & Yu, Tao & Zhang, Xiaoshun & Sun, Liming, 2021. "Energy cooperation between Myanmar and China under One Belt One Road: Current state, challenges and perspectives," Energy, Elsevier, vol. 215(PB).
    61. Peng, Hua-Rong & Tan, Xiujie & Managi, Shunsuke & Taghizadeh-Hesary, Farhad, 2022. "Club convergence in energy efficiency of Belt and Road Initiative countries: The role of China’s outward foreign direct investment," Energy Policy, Elsevier, vol. 168(C).
    62. Eirini Stergiou & Kostas Kounetas, 2021. "European Industries’ Energy Efficiency under Different Technological Regimes: The Role of CO2 Emissions, Climate, Path Dependence and Energy Mix," The Energy Journal, , vol. 42(1), pages 93-128, January.

  63. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.

    Cited by:

    1. Liang Li & Bangzhu Zhu & Xiahui Che & Huaping Sun & Meixuen Tan, 2021. "Examining Effect of Green Transformational Leadership and Environmental Regulation through Emission Reduction Policy on Energy-Intensive Industry’s Employee Turnover Intention in China," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    2. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    3. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    4. Yuping Deng & Yanrui Wu & Helian Xu, 2020. "Political Connections and Firm Pollution Behaviour: An Empirical Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 867-898, April.
    5. Yang, Jun & Cheng, Jixin & Zou, Ran & Geng, Zhifei, 2021. "Industrial SO2 technical efficiency, reduction potential and technology heterogeneities of China's prefecture-level cities: A multi-hierarchy meta-frontier parametric approach," Energy Economics, Elsevier, vol. 104(C).
    6. Yue Wang & Lei Shi & Di Chen & Xue Tan, 2020. "Spatial-Temporal Analysis and Driving Factors Decomposition of (De)Coupling Condition of SO 2 Emissions in China," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    7. Yang Zhang & Xinxin Zhang, 2022. "The Threshold Effect of Executive Compensation on Corporate Environmental Responsibility: Based on the Moderating Effect of Industry Competition," Sustainability, MDPI, vol. 14(14), pages 1-24, July.
    8. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    9. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
    10. Wenyin Cheng & Zhusong Yang & Xia Pan & Tomas Baležentis & Xueli Chen, 2020. "Evolution of Carbon Shadow Prices in China’s Industrial Sector during 2003–2017: A By-Production Approach," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    11. Rohit Sharma & Raghvendra Kumar & Pradeep Kumar Singh & Maria Simona Raboaca & Raluca-Andreea Felseghi, 2020. "A Systematic Study on the Analysis of the Emission of CO, CO 2 and HC for Four-Wheelers and Its Impact on the Sustainable Ecosystem," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    12. Feng Wang & Ruiqi Wang, 2021. "The Mechanism of Driving Green Growth and Decreasing Energy Security Risks by Innovation in China," Sustainability, MDPI, vol. 13(9), pages 1-34, April.
    13. Tianyu Li & Ciwei Gao & Michael G. Pollitt & Tao Chen & Hao Ming, 2022. "Measuring the effects of power system reform in Jiangsu province, China from the perspective of social cost benefit analysis," Working Papers EPRG2213, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Muhammad Usman & Zhiqiang Ma & Muhammad Wasif Zafar & Abdul Haseeb & Rana Umair Ashraf, 2019. "Are Air Pollution, Economic and Non-Economic Factors Associated with Per Capita Health Expenditures? Evidence from Emerging Economies," IJERPH, MDPI, vol. 16(11), pages 1-22, June.
    15. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    16. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    17. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    18. Jiekun Song & Zhicheng Liu & Rui Chen & Xueli Leng, 2023. "Calculation and Allocation of Atmospheric Environment Governance Cost in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    19. Shihong Zeng & Runtong Liu & Ya Zhou & Xiaobo He, 2021. "Research on Provincial Forestry Investment Efficiency in China," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 11(5), pages 1-1.
    20. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).

  64. Sheng, Yu & Shi, Xunpeng & Su, Bin, 2018. "Re-analyzing the economic impact of a global bunker emissions charge," Energy Economics, Elsevier, vol. 74(C), pages 107-119.

    Cited by:

    1. Maxim A. Dulebenets & Junayed Pasha & Olumide F. Abioye & Masoud Kavoosi, 2021. "Vessel scheduling in liner shipping: a critical literature review and future research needs," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 43-106, March.
    2. Yang, Shuai & Yuan, Jun & Nian, Victor & Li, Lu & Li, Hailong, 2022. "Economics of marinised offshore charging stations for electrifying the maritime sector," Applied Energy, Elsevier, vol. 322(C).
    3. Gabriel Felbermayr & Sonja Peterson & Joschka Wanner, 2022. "The Impact of Trade and Trade Policy on the Environment and the Climate. A Review," WIFO Working Papers 649, WIFO.
    4. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    5. Mundaca, Gabriela & Strand, Jon, 2020. "Carbon pricing of international transport fuels: Impacts on carbon emissions and trade activity," MPRA Paper 100347, University Library of Munich, Germany, revised 19 Mar 2020.
    6. Paula C. Pereda & Andrea Lucchesi, 2022. "Alternative frameworks for cost-effectiveness analysis of environmental policies in maritime transport," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 630-650, September.

  65. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.

    Cited by:

    1. Liu, Bin & Wang, Dedong & Xu, Youquan & Liu, Chunlu & Luther, Mark, 2018. "Vertical specialisation measurement of energy embodied in international trade of the construction industry," Energy, Elsevier, vol. 165(PB), pages 689-700.
    2. Gao, Cuixia & Tao, Simin & Su, Bin & Mensah, Isaac Adjei & Sun, Mei, 2023. "Exploring renewable energy trade coopetition relationships: Evidence from belt and road countries, 1996-2018," Renewable Energy, Elsevier, vol. 202(C), pages 196-209.
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    4. Zhang, Shuai & Yang, Dewei & Ji, Yijia & Meng, Haishan & Zhou, Tian & Zhang, Junmei & Yang, Hang, 2024. "Spatio-temporal patterns and cascading risks of embodied energy flows in China," Energy, Elsevier, vol. 298(C).
    5. Xu, Jun & Liu, Jiawei & Ling, Peng & Zhang, Xin & Xu, Kai & He, Limo & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2020. "Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property," Energy, Elsevier, vol. 202(C).
    6. Nie, Yan & Zhang, Guoxing & Duan, Hongbo, 2020. "An interconnected panorama of future cross-regional power grid: A complex network approach," Resources Policy, Elsevier, vol. 67(C).
    7. Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Fahmida Laghari & Farhan Ahmed & Hai-Xia Li & Štefan Bojnec, 2023. "Decoupling of Electricity Consumption Efficiency, Environmental Degradation and Economic Growth: An Empirical Analysis," Energies, MDPI, vol. 16(6), pages 1-21, March.
    9. Meihui Jiang, 2022. "Locating the Principal Sectors for Carbon Emission Reduction on the Global Supply Chains by the Methods of Complex Network and Susceptible–Infective Model," Sustainability, MDPI, vol. 14(5), pages 1-13, February.
    10. Pang, Qinghua & Liu, Xuan & Zhang, Lina & Chiu, Yung-ho, 2024. "Temporal-spatial evolution of environmental inequality of embodied energy transfer within inter-provincial trade of China," Energy, Elsevier, vol. 299(C).
    11. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    12. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    13. Zhijun Feng & Wen Zhou & Qian Ming, 2019. "Embodied Energy Flow Patterns of the Internal and External Industries of Manufacturing in China," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    14. Qikai Lu & Tiance Lv & Sirui Wang & Lifei Wei, 2023. "Spatiotemporal Variation and Development Stage of CO 2 Emissions of Urban Agglomerations in the Yangtze River Economic Belt, China," Land, MDPI, vol. 12(9), pages 1-20, August.
    15. Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
    16. Hong, Jingke & Gu, Jianping & Liang, Xin & Liu, Guiwen & Shen, Geoffrey Qiping & Tang, Miaohan, 2019. "Spatiotemporal investigation of energy network patterns of agglomeration economies in China: Province-level evidence," Energy, Elsevier, vol. 187(C).
    17. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    18. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    19. Hao Chen & Ling He & Jiachuan Chen & Bo Yuan & Teng Huang & Qi Cui, 2019. "Impacts of Clean Energy Substitution for Polluting Fossil-Fuels in Terminal Energy Consumption on the Economy and Environment in China," Sustainability, MDPI, vol. 11(22), pages 1-29, November.
    20. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    21. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    22. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    23. Luping Zhang & Yingying Zhu & Liwei Fan, 2021. "Temporal-Spatial Structure and Influencing Factors of Urban Energy Efficiency in China’s Agglomeration Areas," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    24. Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
    25. Liu, Bin & Zhang, Lei & Sun, Jide & Wang, Dedong & Liu, Chunlu & Luther, Mark & Xu, Youquan, 2020. "Analysis and comparison of embodied energies in gross exports of the construction sector by means of their value-added origins," Energy, Elsevier, vol. 191(C).
    26. Jiekun Song & Lina Jiang & Zeguo He & Zhicheng Liu & Xueli Leng, 2022. "Characteristics Analysis and Identification of Key Sectors of Air Pollutant Emissions in China from the Perspective of Complex Metabolic Network," IJERPH, MDPI, vol. 19(15), pages 1-28, July.
    27. Tianrui Wang & Yu Chen & Leya Zeng, 2022. "Spatial-Temporal Evolution Analysis of Carbon Emissions Embodied in Inter-Provincial Trade in China," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    28. Zheng, Huiling & Zhou, Jinsheng & Gao, Xiangyun & Xi, Xian & Liu, Donghui & Zhao, Yiran, 2021. "Global impacts of the topological structure of industrial driving networks on energy intensity," Energy, Elsevier, vol. 225(C).
    29. Yufei Xu & Zhangyi Ji & Chenming Jiang & Wei Xu & Cuixia Gao, 2024. "Examining the Coopetition Relationships in Renewable Energy Trade among BRI Countries: Complexity, Stability, and Evolution," Energies, MDPI, vol. 17(5), pages 1-16, March.
    30. Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
    31. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    32. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    33. López, Luis Antonio & Arce, Guadalupe & Jiang, Xuemei, 2020. "Mapping China's flows of emissions in the world's carbon footprint: A network approach of production layers," Energy Economics, Elsevier, vol. 87(C).
    34. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    35. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    36. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    37. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    38. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).

  66. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.

    Cited by:

    1. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    2. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2021. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Working Papers 2021-22, Faculty of Economics and Statistics, Universität Innsbruck.
    4. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    5. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    6. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    7. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    8. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    9. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    10. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    11. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    12. Yilmaz Bayar & Laura Diaconu (Maxim) & Andrei Maxim, 2020. "Financial Development and CO 2 Emissions in Post-Transition European Union Countries," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
    13. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    14. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    15. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    16. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    17. Liang, Junyi & Wang, Shaojian & Liao, Yuantao & Feng, Kuishuang, 2024. "Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis," Applied Energy, Elsevier, vol. 358(C).
    18. Xin Xu & Yuming Shen & Hanchu Liu, 2022. "What Cause Large Spatiotemporal Differences in Carbon Intensity of Energy-Intensive Industries in China? Evidence from Provincial Data during 2000–2019," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    19. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    20. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    21. Young Yoon & Minyoung Yang & Jinsoo Kim, 2018. "An Analysis of CO 2 Emissions from International Transport and the Driving Forces of Emissions Change," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    22. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    23. Xiaojie Yu & Duminda Kuruppuarachchi & Sriyalatha Kumarasinghe, 2024. "Financial development, FDI, and CO2 emissions: does carbon pricing matter?," Applied Economics, Taylor & Francis Journals, vol. 56(25), pages 2959-2974, May.
    24. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    25. Jayasooriya, Sujith, 2021. "Impact of Agricultural Factors on Carbon Footprints for GHG Emission Policies in Asia," MPRA Paper 109790, University Library of Munich, Germany.
    26. Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
    27. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    28. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    29. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    30. Iman Faridmehr & Moncef L. Nehdi & Mehdi Nikoo & Kiyanets A. Valerievich, 2021. "Predicting Embodied Carbon and Cost Effectiveness of Post-Tensioned Slabs Using Novel Hybrid Firefly ANN," Sustainability, MDPI, vol. 13(21), pages 1-30, November.
    31. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    32. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2018. "Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach," Energy Economics, Elsevier, vol. 76(C), pages 439-456.
    33. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    34. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    35. Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
    36. Meng Xu & Zhongfeng Qin & Yigang Wei, 2023. "Exploring the financing and allocating schemes for the Chinese Green Climate Fund," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2487-2508, March.
    37. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    38. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    39. Xiaolei Liu & Heng Chen & Cheng Peng & Mingqiu Li, 2022. "Assessing the Drivers of Carbon Intensity Change in China: A Dynamic Spatial–Temporal Production-Theoretical Decomposition Analysis Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    40. Yu Sang Chang & Dosoung Choi & Hann Earl Kim, 2017. "Dynamic Trends of Carbon Intensities among 127 Countries," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    41. Ping Zhou & Hailing Li, 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    42. Oliver I. Inah & Fidelis I. Abam & Bethrand N. Nwankwojike, 2022. "Exploring the CO2 emissions drivers in the Nigerian manufacturing sector through decomposition analysis and the potential of carbon tax (CAT) policy on CO2 mitigation," Future Business Journal, Springer, vol. 8(1), pages 1-22, December.
    43. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    44. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    45. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    46. Jih-Shong Wu, 2023. "Measuring Economic Development and Carbon Dioxide Emissions Inefficiency," SAGE Open, , vol. 13(1), pages 21582440231, February.
    47. Abdul Rehman & Magdalena Radulescu & Hengyun Ma & Vishal Dagar & Imran Hussain & Muhammad Kamran Khan, 2021. "The Impact of Globalization, Energy Use, and Trade on Ecological Footprint in Pakistan: Does Environmental Sustainability Exist?," Energies, MDPI, vol. 14(17), pages 1-16, August.
    48. Jiang, Lei & He, Shixiong & Zhong, Zhangqi & Zhou, Haifeng & He, Lingyun, 2019. "Revisiting environmental kuznets curve for carbon dioxide emissions: The role of trade," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 245-257.
    49. Mura, Matteo & Longo, Mariolina & Toschi, Laura & Zanni, Sara & Visani, Franco & Bianconcini, Silvia, 2021. "The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context," Ecological Economics, Elsevier, vol. 183(C).
    50. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.

  67. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.

    Cited by:

    1. Zhang, Yanfang & Shi, Xunpeng & Qian, Xiangyan & Chen, Sai & Nie, Rui, 2021. "Macroeconomic effect of energy transition to carbon neutrality: Evidence from China's coal capacity cut policy," Energy Policy, Elsevier, vol. 155(C).
    2. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    3. Wang, Xiaolei & Bai, Mengqi & Xie, Chunping, 2019. "Investigating CO2 mitigation potentials and the impact of oil price distortion in China's transport sector," Energy Policy, Elsevier, vol. 130(C), pages 320-327.
    4. Wang, Xiaolei & Deng, Renxin & Yang, Yufang, 2023. "The spatiotemporal effect of factor price distortion on capacity utilization in China’s iron and steel industry," Resources Policy, Elsevier, vol. 86(PA).
    5. Lin, Boqiang & Chen, Yu, 2020. "Transportation infrastructure and efficient energy services: A perspective of China's manufacturing industry," Energy Economics, Elsevier, vol. 89(C).
    6. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    7. Han, Hongyun & Wu, Shu, 2018. "Rural residential energy transition and energy consumption intensity in China," Energy Economics, Elsevier, vol. 74(C), pages 523-534.
    8. Jiang, Wei & Li, Xitao & Liu, Ruoxi & Song, Yijia, 2022. "Local fiscal pressure, policy distortion and energy efficiency: Micro-evidence from a quasi-natural experiment in China," Energy, Elsevier, vol. 254(PB).
    9. Ru Sha & Tao Ge & Jinye Li, 2022. "How Energy Price Distortions Affect China’s Economic Growth and Carbon Emissions," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    10. Sha, Ru & Li, Jinye & Ge, Tao, 2021. "How do price distortions of fossil energy sources affect China's green economic efficiency?," Energy, Elsevier, vol. 232(C).
    11. Hongyun Han & Shu Wu, 2019. "Determinants of the Behavioral Lock-in of Rural Residents’ Direct Biomass Energy Consumption in China," Sustainability, MDPI, vol. 11(2), pages 1-25, January.
    12. Zhang, Hongyan & Chen, Suisui & Wang, Shuhong, 2022. "Impact of economic growth and labor productivity dispersion on energy intensity in China," Energy, Elsevier, vol. 242(C).
    13. Lin, Boqiang & Chen, Yu, 2019. "Will economic infrastructure development affect the energy intensity of China's manufacturing industry?," Energy Policy, Elsevier, vol. 132(C), pages 122-131.
    14. Xiaolei Wang & Hui Wang & Shuang Liang & Shichun Xu, 2021. "The Influence of Energy Price Distortion on Region Energy Efficiency in China’s Energy-Intensive Industries from the Perspectives of Urban Heterogeneity," Sustainability, MDPI, vol. 14(1), pages 1-15, December.
    15. Xu, Mengmeng & Lin, Boqiang, 2022. "Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry," Resources Policy, Elsevier, vol. 77(C).
    16. Xinyu Hou & Puyang Sun, 2023. "The impact of dismantling state monopoly on market integration: Evidence from the edible salt reform in China," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 31(3), pages 589-609, July.
    17. Lai, Aolin & Wang, Qunwei & Cui, Lianbiao, 2022. "Can market segmentation lead to green paradox? Evidence from China," Energy, Elsevier, vol. 254(PC).
    18. Pan, Xianyou & Song, Malin & Wang, Yuqing & Shen, Zhiyang & Song, Jinbo & Xie, Pinjie & Pan, Xiongfeng, 2022. "Liability accounting of natural resource assets from the perspective of input Slack—An analysis based on the energy resource in 282 prefecture-level cities in China," Resources Policy, Elsevier, vol. 78(C).
    19. Wu, Liangpeng & Xu, Chengzhen & Zhu, Qingyuan & Zhou, Dequn, 2024. "Multiple energy price distortions and improvement of potential energy consumption structure in the energy transition," Applied Energy, Elsevier, vol. 362(C).
    20. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
    21. Cui, Jian & Yang, Hanfang & Wang, Yifan & Yang, Caili, 2023. "Dynamics of the gas retail market under China's price cap regulation," Energy Policy, Elsevier, vol. 174(C).
    22. Yang, Mian & Yang, Fuxia & Sun, Chuanwang, 2018. "Factor market distortion correction, resource reallocation and potential productivity gains: An empirical study on China's heavy industry sector," Energy Economics, Elsevier, vol. 69(C), pages 270-279.
    23. Wang, Zanxin & Wei, Wei & Luo, Junwen & Calderon, Margaret, 2019. "The effects of petroleum product price regulation on macroeconomic stability in China," Energy Policy, Elsevier, vol. 132(C), pages 96-105.
    24. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    25. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    26. Gao, Kang & Yuan, Yijun, 2022. "Does market-oriented reform make the industrial sector “Greener” in China? Fresh evidence from the perspective of capital-labor-energy market distortions," Energy, Elsevier, vol. 254(PA).
    27. Tan, Ruipeng & Xu, Mengmeng & Sun, Chuanwang, 2021. "The impacts of energy reallocation on economic output and CO2 emissions in China," Energy Economics, Elsevier, vol. 94(C).
    28. Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    29. Valeriy Prasolov & Valery Bezpalov & Svetlana Doguchaeva & Rodion Rogulin, 2020. "Energy Price Formation and Energy Consumption by Households as a Factor of Ensuring Energy Safety," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 82-93.
    30. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    31. Xu, Mengmeng & Tan, Ruipeng, 2021. "Removing energy allocation distortion to increase economic output and energy efficiency in China," Energy Policy, Elsevier, vol. 150(C).
    32. Zhang, Qi & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Is refined oil price regulation a “shock absorber” for crude oil price shocks?," Energy Policy, Elsevier, vol. 173(C).
    33. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    34. Han, Hongyun & Wu, Shu & Zhang, Zhijian, 2018. "Factors underlying rural household energy transition: A case study of China," Energy Policy, Elsevier, vol. 114(C), pages 234-244.
    35. Khan, Zeeshan & Malik, Muhammad Yousaf & Latif, Kashmala & Jiao, Zhilun, 2020. "Heterogeneous effect of eco-innovation and human capital on renewable & non-renewable energy consumption: Disaggregate analysis for G-7 countries," Energy, Elsevier, vol. 209(C).
    36. Zheng-Xin Wang & Dan-Dan Li & Hong-Hao Zheng, 2018. "The External Performance Appraisal of China Energy Regulation: An Empirical Study Using a TOPSIS Method Based on Entropy Weight and Mahalanobis Distance," IJERPH, MDPI, vol. 15(2), pages 1-18, January.
    37. Jia, Zhijie & Lin, Boqiang, 2023. "Primary fossil energy cost and price regulation in energy processing sectors---the perspective of price regulation market with Chinese characteristics," Resources Policy, Elsevier, vol. 83(C).
    38. Chen, Suisui & Zhang, Hongyan & Wang, Shuhong, 2022. "Trade openness, economic growth, and energy intensity in China," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    39. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    40. Zhu, Qingyuan & Xu, Chengzhen & Chen, Qingjuan & Wu, Liangpeng, 2024. "Oil price distortion and its impact on green economic efficiency in China’s transportation: A spatial effect perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    41. Xing Gao & Cheng Shi & Keyu Zhai, 2018. "An Evaluation of Environmental Governance in Urban China Based on a Hesitant Fuzzy Linguistic Analytic Network Process," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    42. Kong, Dongmin & Yang, Xiandong & Xu, Jian, 2020. "Energy price and cost induced innovation: Evidence from China," Energy, Elsevier, vol. 192(C).
    43. Fan, Wenrui & Wang, Zanxin, 2022. "Whether to abandon or continue the petroleum product price regulation in China?," Energy Policy, Elsevier, vol. 165(C).
    44. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).

  68. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.

    Cited by:

    1. Yan, Yunfeng & Wang, Ran & Chen, Sida & Wang, Feifan & Zhao, Zhongxiu, 2022. "Mapping carbon footprint along global value chains: A study based on firm heterogeneity in China," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 398-408.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    3. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    4. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    5. Li, Xiaoyu & Zeng, Zhao & Zhang, Zengkai & Yao, Ye & Du, Huibin, 2023. "The rising North-South carbon flows within China from 2012 to 2017," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 263-272.
    6. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    7. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    8. Andrea Molocchi, 2020. "From production to consumption: An inter-sectoral analysis of air emissions external costs in Italy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 155-180.
    9. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    10. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    11. Yan, Bingqian & Xia, Yan & Jiang, Xuemei, 2023. "Carbon productivity and value-added generations: Regional heterogeneity along global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 111-125.
    12. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    13. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    14. Benkraiem, Ramzi & Dubocage, Emmanuelle & Lelong, Yann & Shuwaikh, Fatima, 2023. "The effects of environmental performance and green innovation on corporate venture capital," Ecological Economics, Elsevier, vol. 210(C).
    15. Zheng, Jiajia & Dang, Yongjie & Assad, Ullah, 2024. "Household energy consumption, energy efficiency, and household income–Evidence from China," Applied Energy, Elsevier, vol. 353(PA).
    16. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    17. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    18. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    19. Shuai Qin & Hong Chen & Haokun Wang, 2021. "Spatial–Temporal Heterogeneity and Driving Factors of Rural Residents’ Food Consumption Carbon Emissions in China—Based on an ESDA-GWR Model," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    20. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    21. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    22. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    23. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    24. Hertwich, Edgar, 2020. "Carbon fueling complex global value chains tripled in the period 1995-2012," SocArXiv zb3rh, Center for Open Science.
    25. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    26. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    27. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    28. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    29. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    30. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    31. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    32. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    33. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    34. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    35. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    36. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    37. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    38. Liang, Junyi & Wang, Shaojian & Liao, Yuantao & Feng, Kuishuang, 2024. "Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis," Applied Energy, Elsevier, vol. 358(C).
    39. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    40. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    41. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
    42. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    43. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    44. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    45. Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
    46. Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Su, Bin & Liu, Yue & Renfei, Xv, 2023. "Embodied energy intensity of global high energy consumption industries: A case study of the construction industry," Energy, Elsevier, vol. 277(C).
    47. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    48. Ortiz, Mateo & Cadarso, María-Ángeles & López, Luis-Antonio & Jiang, Xuemei, 2022. "The trade-off between the economic and environmental footprints of multinationals’ foreign affiliates," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 85-97.
    49. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    50. H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
    51. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    52. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    53. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    54. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    55. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    56. Lin Zhang and Philip Kofi Adom, 2018. "Energy Efficiency Transitions in China: How Persistent are the Movements to/from the Frontier?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    57. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    58. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    59. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    60. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    61. Qian Liu & Suocheng Dong & Fujia Li & Hao Cheng & Shantong Li & Yang Yang, 2022. "Features, Mechanisms and Optimization of Embodied Carbon Emissions for Energy Supply Bases: Case Study of Shanxi, China," Energies, MDPI, vol. 15(6), pages 1-21, March.
    62. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    63. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    64. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    65. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    66. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    67. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    68. Xiao, Bowen & Fan, Ying & Guo, Xiaodan, 2018. "Exploring the macroeconomic fluctuations under different environmental policies in China: A DSGE approach," Energy Economics, Elsevier, vol. 76(C), pages 439-456.
    69. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    70. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    71. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    72. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    73. Chen, Weiming & Zhang, Zhenjun & Chen, Kaiyuan, 2023. "Inter-regional economic-environmental correlation effects of power sector in China," Energy, Elsevier, vol. 278(C).
    74. Meng Xu & Zhongfeng Qin & Yigang Wei, 2023. "Exploring the financing and allocating schemes for the Chinese Green Climate Fund," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2487-2508, March.
    75. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    76. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    77. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    78. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    79. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    80. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).
    81. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    82. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    83. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    84. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    85. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    86. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    87. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    88. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    89. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
    90. Liao, Hua & Peng, Ying & Wang, Fang-Zhi & Zhang, Tong, 2022. "Understanding energy use growth: The role of investment-GDP ratio," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 15-24.
    91. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    92. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).
    93. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    94. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    95. Ling-Yun He & Hui Huang, 2021. "Economic Benefits and Pollutants Emission Embodied in China–US Merchandise Trade—Comparative Analysis Based on Gross Trade, Value Added Trade and Value Added in Trade," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    96. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    97. Raza, Muhammad Yousaf & Lin, Boqiang, 2022. "Energy efficiency and factor productivity in Pakistan: Policy perspectives," Energy, Elsevier, vol. 247(C).
    98. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    99. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    100. Wang, Yizhong & Hang, Ye & Jeong, Sujong & Wang, Qunwei, 2023. "Intersectoral transfers and drivers of net CO2 emissions in China incorporating sources and sinks," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    101. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    102. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  69. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.

    Cited by:

    1. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    2. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    3. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    4. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    5. Meng, Fanxin & Liu, Gengyuan & Chang, Yuan & Su, Meirong & Hu, Yuanchao & Yang, Zhifeng, 2019. "Quantification of urban water-carbon nexus using disaggregated input-output model: A case study in Beijing (China)," Energy, Elsevier, vol. 171(C), pages 403-418.
    6. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    7. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    8. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    9. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    10. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    11. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    12. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.

  70. Li, Yingzhu & Shi, Xunpeng & Su, Bin, 2017. "Economic, social and environmental impacts of fuel subsidies: A revisit of Malaysia," Energy Policy, Elsevier, vol. 110(C), pages 51-61.

    Cited by:

    1. How, Bing Shen & Ngan, Sue Lin & Hong, Boon Hooi & Lam, Hon Loong & Ng, Wendy Pei Qin & Yusup, Suzana & Ghani, Wan Azlina Wan Abd Karim & Kansha, Yasuki & Chan, Yi Herng & Cheah, Kin Wai & Shahbaz, Mu, 2019. "An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Shehabi, Manal, 2020. "Diversification effects of energy subsidy reform in oil exporters: Illustrations from Kuwait," Energy Policy, Elsevier, vol. 138(C).
    3. Ngan, Sue Lin & How, Bing Shen & Teng, Sin Yong & Leong, Wei Dong & Loy, Adrian Chun Minh & Yatim, Puan & Promentilla, Michael Angelo B. & Lam, Hon Loong, 2020. "A hybrid approach to prioritize risk mitigation strategies for biomass polygeneration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Saeed Solaymani, 2021. "Energy subsidy reform evaluation research – reviews in Iran," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 520-538, June.
    5. Dehghan, Hamed & Amin-Naseri, Mohammad Reza, 2022. "A simulation-based optimization model to determine optimal electricity prices under various scenarios considering stakeholders’ objectives," Energy, Elsevier, vol. 238(PC).
    6. Boudekhdekh, Karim, 2022. "A comparative analysis of energy subsidy in the MENA region," MPRA Paper 115275, University Library of Munich, Germany.
    7. Kyungwon Park & Yoon Lee & Joon Han, 2021. "Economic Perspective on Discontinuing Fossil Fuel Subsidies and Moving toward a Low-Carbon Society," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    8. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Rhys Jones & Alexandra Macmillan & Papaarangi Reid, 2020. "Climate Change Mitigation Policies and Co-Impacts on Indigenous Health: A Scoping Review," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    10. Sakiru Adebola Solarin, 2022. "Modelling Two Dimensions of Poverty in Selected Developing Countries: The Impact of Fossil Fuel Subsidies," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 160(1), pages 357-379, February.
    11. Muhammad Asyraf Azni & Rasyikah Md Khalid & Umi Azmah Hasran & Siti Kartom Kamarudin, 2023. "Review of the Effects of Fossil Fuels and the Need for a Hydrogen Fuel Cell Policy in Malaysia," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    12. Bhuvandas, Dhanyashree & Gundimeda, Haripriya, 2020. "Welfare impacts of transport fuel price changes on Indian households: An application of LA-AIDS model," Energy Policy, Elsevier, vol. 144(C).
    13. Amann, Juergen & Cantore, Nicola & Calí, Massimiliano & Todorov, Valentin & Cheng, Charles Fang Chin, 2021. "Switching it up: The effect of energy price reforms in Oman," World Development, Elsevier, vol. 142(C).
    14. Majidpour, Mehdi, 2022. "Policy lessons from the execution of fuel dual-pricing: Insights for fuel-subsidizing economies," Energy, Elsevier, vol. 247(C).
    15. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    16. Ying, Loo Sze & Harun, Mukaramah, 2019. "Responses of Firms and Households to Government Expenditure in Malaysia: Evidence for the Fuel Subsidy Withdrawal," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 53(2), pages 29-39.
    17. Gelan, Ayele U., 2018. "Kuwait's energy subsidy reduction: Examining economic and CO2 emission effects with or without compensation," Energy Economics, Elsevier, vol. 71(C), pages 186-200.
    18. Dzyuba, Yu. & Bakalova, I., 2023. "CGE models for resource-based economy: A comprehensive bibliometric analysis," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 12-50.
    19. Sambodo, Maxensius Tri & Novandra, Rio, 2019. "The state of energy poverty in Indonesia and its impact on welfare," Energy Policy, Elsevier, vol. 132(C), pages 113-121.
    20. Ghosh, Probal P., 2022. "Impact of India's diesel subsidy reforms and pricing policy on growth and inflation," Energy Economics, Elsevier, vol. 113(C).
    21. Bah, Muhammad Maladoh & Saari, M. Yusof, 2020. "Quantifying the impacts of energy price reform on living expenses in Saudi Arabia," Energy Policy, Elsevier, vol. 139(C).
    22. Ouyang, Zi-sheng & Liu, Meng-tian & Huang, Su-su & Yao, Ting, 2022. "Does the source of oil price shocks matter for the systemic risk?," Energy Economics, Elsevier, vol. 109(C).
    23. Arzaghi, Mohammad & Squalli, Jay, 2023. "The environmental impact of fossil fuel subsidy policies," Energy Economics, Elsevier, vol. 126(C).
    24. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    25. Breisinger, Clemens & Mukashov, Askar & Raouf, Mariam & Wiebelt, Manfred, 2019. "Energy subsidy reform for growth and equity in Egypt: The approach matters," Open Access Publications from Kiel Institute for the World Economy 261844, Kiel Institute for the World Economy (IfW Kiel).
    26. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
    27. Aktar, Asikha & Alam, Md. Mahmudul & Harun, Mukaramah, 2022. "Energy Efficiency Policies in Malaysia: A Critical Evaluation from the Sustainable Development Perspective," OSF Preprints 9cf3a, Center for Open Science.
    28. Kiuila, Olga, 2018. "Decarbonisation perspectives for the Polish economy," Energy Policy, Elsevier, vol. 118(C), pages 69-76.
    29. Aiman Albatayneh & Adel Juaidi & Francisco Manzano-Agugliaro, 2023. "The Negative Impact of Electrical Energy Subsidies on the Energy Consumption—Case Study from Jordan," Energies, MDPI, vol. 16(2), pages 1-17, January.
    30. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    31. Ozgur, Onder & Aydin, Levent & Karagol, Erdal Tanas & Ozbugday, Fatih Cemil, 2021. "The fuel price pass-through in Turkey: The case study of motor fuel price subsidy system," Energy, Elsevier, vol. 226(C).
    32. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).
    33. Woźniak, Justyna & Krysa, Zbigniew & Dudek, Michał, 2020. "Concept of government-subsidized energy prices for a group of individual consumers in Poland as a means to reduce smog," Energy Policy, Elsevier, vol. 144(C).
    34. Raei, Hasan & Maleki, Abbas & Farajzadeh, Zakariya, 2024. "Analysis of energy policy reform in Iran: Energy and emission intensity changes," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1535-1557.
    35. Shittu, Ibrahim & Abdul Latiff, Abdul Rais & Baharudin, Siti ‘Aisyah, 2024. "Assessing the compensation and reinvestment plans for fuel subsidy rationalization in Nigeria: A dynamic computable general equilibrium approach," Energy, Elsevier, vol. 293(C).
    36. Zhang, Qi & Tang, Yanyan & Bunn, Derek & Li, Hailong & Li, Yaoming, 2021. "Comparative evaluation and policy analysis for recycling retired EV batteries with different collection modes," Applied Energy, Elsevier, vol. 303(C).

  71. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.

    Cited by:

    1. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    2. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    3. Gatt, Damien & Yousif, Charles & Cellura, Maurizio & Camilleri, Liberato & Guarino, Francesco, 2020. "Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    4. Cascone, Ylenia & Capozzoli, Alfonso & Perino, Marco, 2018. "Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates," Applied Energy, Elsevier, vol. 211(C), pages 929-953.
    5. Yuan, Jun & Nian, Victor & He, Junliang & Yan, Wei, 2019. "Cost-effectiveness analysis of energy efficiency measures for maritime shipping using a metamodel based approach with different data sources," Energy, Elsevier, vol. 189(C).
    6. José Sánchez Ramos & MCarmen Guerrero Delgado & Servando Álvarez Domínguez & José Luis Molina Félix & Francisco José Sánchez de la Flor & José Antonio Tenorio Ríos, 2019. "Systematic Simplified Simulation Methodology for Deep Energy Retrofitting Towards Nze Targets Using Life Cycle Energy Assessment," Energies, MDPI, vol. 12(16), pages 1-27, August.
    7. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    8. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    9. Kleijnen, J.P.C. & van Beers, W.C.M., 2018. "Prediction for Big Data through Kriging : Small Sequential and One-Shot Designs," Discussion Paper 2018-022, Tilburg University, Center for Economic Research.
    10. Adriana Veronica Litră & Eliza Nichifor & Ioana Bianca Chiţu & Alexandra Zamfirache & Gabriel Brătucu, 2023. "The Dilemma of the European Integration Principle—Ensuring Energy Independence of the European Union," Sustainability, MDPI, vol. 15(21), pages 1-19, November.
    11. Yuan, Jianjuan & Huang, Ke & Lu, Shilei & Zhang, Ji & Han, Zhao & Zhou, Zhihua, 2022. "Analysis of influencing factors on heat consumption of large residential buildings with different occupancy rates-Tianjin case study," Energy, Elsevier, vol. 238(PC).
    12. Garwood, Tom Lloyd & Hughes, Ben Richard & O'Connor, Dominic & Calautit, John K. & Oates, Michael R. & Hodgson, Thomas, 2018. "A framework for producing gbXML building geometry from Point Clouds for accurate and efficient Building Energy Modelling," Applied Energy, Elsevier, vol. 224(C), pages 527-537.
    13. Zhang, Qiang & Tian, Zhe & Ma, Zhijun & Li, Genyan & Lu, Yakai & Niu, Jide, 2020. "Development of the heating load prediction model for the residential building of district heating based on model calibration," Energy, Elsevier, vol. 205(C).
    14. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    15. Eneyew, Dagimawi D. & Capretz, Miriam A.M. & Bitsuamlak, Girma T., 2024. "Continuous model calibration framework for smart-building digital twin: A generative model-based approach," Applied Energy, Elsevier, vol. 375(C).
    16. Wate, P. & Iglesias, M. & Coors, V. & Robinson, D., 2020. "Framework for emulation and uncertainty quantification of a stochastic building performance simulator," Applied Energy, Elsevier, vol. 258(C).
    17. Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
    18. Razak Olu-Ajayi & Hafiz Alaka & Christian Egwim & Ketty Grishikashvili, 2024. "Comprehensive Analysis of Influencing Factors on Building Energy Performance and Strategic Insights for Sustainable Development: A Systematic Literature Review," Sustainability, MDPI, vol. 16(12), pages 1-27, June.
    19. Yuan, Jun & Nian, Victor & Su, Bin, 2019. "Evaluation of cost-effective building retrofit strategies through soft-linking a metamodel-based Bayesian method and a life cycle cost assessment method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Si Chen & Daniel Friedrich & Zhibin Yu & James Yu, 2019. "District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration," Energies, MDPI, vol. 12(18), pages 1-19, September.
    21. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

  72. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.

    Cited by:

    1. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    2. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    3. Ibrahim, Ridwan Lanre & Ajide, Kazeem Bello, 2021. "The dynamic heterogeneous impacts of nonrenewable energy, trade openness, total natural resource rents, financial development and regulatory quality on environmental quality: Evidence from BRICS econo," Resources Policy, Elsevier, vol. 74(C).
    4. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Jiang, Bo & Kong, Xue, 2019. "Optimization of electricity generation and interprovincial trading strategies in Southern China," Energy, Elsevier, vol. 174(C), pages 696-707.
    6. Kathleen Araújo & David Shropshire, 2021. "A Meta-Level Framework for Evaluating Resilience in Net-Zero Carbon Power Systems with Extreme Weather Events in the United States," Energies, MDPI, vol. 14(14), pages 1-25, July.
    7. Baghersad, Milad & Zobel, Christopher W., 2021. "Assessing the extended impacts of supply chain disruptions on firms: An empirical study," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Bigerna, Simona & D’Errico, Maria Chiara & Polinori, Paolo, 2021. "Energy security and RES penetration in a growing decarbonized economy in the era of the 4th industrial revolution," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    9. Liu, Wei & Li, Xin & Liu, Chunyan & Wang, Minxi & Liu, Litao, 2023. "Resilience assessment of the cobalt supply chain in China under the impact of electric vehicles and geopolitical supply risks," Resources Policy, Elsevier, vol. 80(C).
    10. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    11. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    12. Mariusz Dacko & Aleksandra Płonka & Łukasz Satoła & Aneta Dacko, 2021. "Sustainable Development According to the Opinions of Polish Experts," Energies, MDPI, vol. 14(17), pages 1-18, August.
    13. Gatto, Andrea & Drago, Carlo, 2020. "Measuring and modeling energy resilience," Ecological Economics, Elsevier, vol. 172(C).

  73. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    3. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    4. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    5. Zhong, Zhangqi & Guo, Zhifang & Zhang, Jianwu, 2021. "Does the participation in global value chains promote interregional carbon emissions transferring via trade? Evidence from 39 major economies," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    6. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    7. Yuting Wang & Lei Wang & Zhemin Li, 2020. "Dynamic Analysis of China’s Imported Raw Milk Powder Consumption," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    8. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    9. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    10. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    12. Huang, Jian-Bai & Luo, Yu-Mei & Feng, Chao, 2019. "An overview of carbon dioxide emissions from China's ferrous metal industry: 1991-2030," Resources Policy, Elsevier, vol. 62(C), pages 541-549.
    13. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    14. Yan Ma & Zhe Song & Shuangqi Li & Tangyang Jiang, 2020. "Dynamic evolution analysis of the factors driving the growth of energy-related CO2 emissions in China: An input-output analysis," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.
    15. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    16. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    17. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    18. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    19. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    20. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    21. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    22. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    23. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    24. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    25. Liang, Junyi & Wang, Shaojian & Liao, Yuantao & Feng, Kuishuang, 2024. "Carbon emissions embodied in investment: Assessing emissions reduction responsibility through multi-regional input-output analysis," Applied Energy, Elsevier, vol. 358(C).
    26. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
    27. Shang, Wen-Long & Ling, Yantao & Ochieng, Washington & Yang, Linchuan & Gao, Xing & Ren, Qingzhong & Chen, Yilin & Cao, Mengqiu, 2024. "Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality," Applied Energy, Elsevier, vol. 365(C).
    28. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    29. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    30. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    31. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    32. Zhang, Pingdan & Yuan, Haoming & Bai, Fuli & Tian, Xin & Shi, Feng, 2018. "How do carbon dioxide emissions respond to industrial structural transitions? Empirical results from the northeastern provinces of China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 145-154.
    33. Nakano, Satoshi & Arai, Sonoe & Washizu, Ayu, 2018. "Development and application of an inter-regional input-output table for analysis of a next generation energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2834-2842.
    34. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    35. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    36. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    37. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    38. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    39. Young Yoon & Minyoung Yang & Jinsoo Kim, 2018. "An Analysis of CO 2 Emissions from International Transport and the Driving Forces of Emissions Change," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    40. PU, Zhengning & FEI, Jinhua, 2022. "The impact of digital finance on residential carbon emissions: Evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 515-527.
    41. Liu, Lirong & Huang, Gordon & Baetz, Brian & Cheng, Guanhui & Pittendrigh, Scott M. & Pan, Siyue, 2020. "Input-output modeling analysis with a detailed disaggregation of energy sectors for climate change policy-making: A case study of Saskatchewan, Canada," Renewable Energy, Elsevier, vol. 151(C), pages 1307-1317.
    42. Bah, Muhammad Maladoh & Saari, M. Yusof, 2020. "Quantifying the impacts of energy price reform on living expenses in Saudi Arabia," Energy Policy, Elsevier, vol. 139(C).
    43. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    44. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    45. Liu, Lirong & Huang, Guohe & Baetz, Brian & Guan, Yuru & Zhang, Kaiqiang, 2020. "Multi-Dimensional Hypothetical Fuzzy Risk Simulation model for Greenhouse Gas mitigation policy development," Applied Energy, Elsevier, vol. 261(C).
    46. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    47. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    48. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    49. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    50. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    51. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    52. Shi Wang & Hua Wang & Li Zhang & Jun Dang, 2019. "Provincial Carbon Emissions Efficiency and Its Influencing Factors in China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    53. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    54. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    55. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    56. Li, Yingzhu & Shi, Xunpeng & Su, Bin, 2017. "Economic, social and environmental impacts of fuel subsidies: A revisit of Malaysia," Energy Policy, Elsevier, vol. 110(C), pages 51-61.
    57. Cheng, Qiongwen & Zhao, Xiaoge & Zhong, Shihu & Xing, Yudan, 2024. "Digital financial inclusion, resident consumption, and urban carbon emissions in China: A transaction cost perspective," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1336-1352.
    58. Qi, Shaozhou & Peng, Huarong & Zhang, Xiaoling & Tan, Xiujie, 2019. "Is energy efficiency of Belt and Road Initiative countries catching up or falling behind? Evidence from a panel quantile regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    59. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    60. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    61. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    62. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    63. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    64. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    65. Robi Kurniawan & Gregory P. Trencher & Achmed S. Edianto & Imam E. Setiawan & Kazuyo Matsubae, 2020. "Understanding the Multi-Faceted Drivers of Increasing Coal Consumption in Indonesia," Energies, MDPI, vol. 13(14), pages 1-22, July.
    66. Yue, Wencong & Li, Yangqing & Su, Meirong & Chen, Qionghong & Rong, Qiangqiang, 2023. "Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income," Applied Energy, Elsevier, vol. 348(C).
    67. Du, Zhili & Xu, Jie & Lin, Boqiang, 2024. "What does the digital economy bring to household carbon emissions? – From the perspective of energy intensity," Applied Energy, Elsevier, vol. 370(C).

  74. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.

    Cited by:

    1. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    2. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    3. Shi, Huiting & Chai, Jian & Lu, Quanying & Zheng, Jiali & Wang, Shouyang, 2022. "The impact of China's low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers," Energy, Elsevier, vol. 239(PD).
    4. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    5. Qiang Du & Yi Li & Libiao Bai, 2017. "The Energy Rebound Effect for the Construction Industry: Empirical Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
    6. Chen, Jiandong & Gao, Ming & Shahbaz, Muhammad & Cheng, Shulei & Song, Malin, 2021. "An improved decomposition approach toward energy rebound effects in China: Review since 1992," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Xiaoyan Li & Hengzhou Xu, 2020. "Effect of local government decision‐making competition on carbon emissions: Evidence from China's three urban agglomerations," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2418-2431, September.
    8. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    9. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    10. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    11. Liu, Yunqiang & Zhu, Jialing & Li, Eldon Y. & Meng, Zhiyi & Song, Yan, 2020. "Environmental regulation, green technological innovation, and eco-efficiency: The case of Yangtze river economic belt in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    12. Zhang, Yue-Jun & Liu, Zhao & Zhou, Si-Ming & Qin, Chang-Xiong & Zhang, Huan, 2018. "The impact of China's Central Rise Policy on carbon emissions at the stage of operation in road sector," Economic Modelling, Elsevier, vol. 71(C), pages 159-173.
    13. Qingsong Wang & Zhenlei Gao & Hongrui Tang & Xueliang Yuan & Jian Zuo, 2018. "Exploring the Direct Rebound Effect of Energy Consumption: A Case Study," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    14. Langinier, Corinne & Ray Chaudhuri, Amrita, 2018. "Green Technology and Patents in the Presence of Green Consumers," Working Papers 2018-15, University of Alberta, Department of Economics.
    15. Luis Gomes & António Coelho & Zita Vale, 2022. "Assessment of Energy Customer Perception, Willingness, and Acceptance to Participate in Smart Grids—A Portuguese Survey," Energies, MDPI, vol. 16(1), pages 1-16, December.
    16. Li, Guohao & Niu, Miaomiao & Xiao, Jin & Wu, Jiaqian & Li, Jinkai, 2023. "The rebound effect of decarbonization in China’s power sector under the carbon trading scheme," Energy Policy, Elsevier, vol. 177(C).
    17. Berner, Anne & Lange, Steffen & Silbersdorff, Alexander, 2022. "Firm-level energy rebound effects and relative efficiency in the German manufacturing sector," Energy Economics, Elsevier, vol. 109(C).
    18. Linwei Pan & Minglei Zhu & Ningning Lang & Tengfei Huo, 2020. "What Is the Amount of China’s Building Floor Space from 1996 to 2014?," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    19. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    20. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza & Piran, Md Jalil, 2020. "A game theoretic approach for the duopoly pricing of energy-efficient appliances regarding innovation protection and social welfare," Energy, Elsevier, vol. 200(C).
    21. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    22. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    23. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    24. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    25. Mahboubeh Jafari & David I. Stern & Stephan B. Bruns, 2021. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," CCEP Working Papers 2107, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    26. Ouyang, Xiaoling & Yang, Yuchuan & Du, Kerui & Cheng, Zhenyu, 2022. "How does residential electricity consumption respond to electricity efficiency improvement? Evidence from 287 prefecture-level cities in China," Energy Policy, Elsevier, vol. 171(C).
    27. Ai, Hongshan & Wu, Xiaofei & Li, Ke, 2020. "Differentiated effects of diversified technological sources on China's electricity consumption: Evidence from the perspective of rebound effect," Energy Policy, Elsevier, vol. 137(C).
    28. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    29. Makridou, Georgia & Doumpos, Michalis & Galariotis, Emilios, 2019. "The financial performance of firms participating in the EU emissions trading scheme," Energy Policy, Elsevier, vol. 129(C), pages 250-259.
    30. Li, Xiaoyan & Xu, Hengzhou, 2020. "The Energy-conservation and Emission-reduction Paths of Industrial sectors: Evidence from Chinas 35 industrial sectors," Energy Economics, Elsevier, vol. 86(C).
    31. Huang, Junbing & Chen, Xiang & Cai, Xiaochen & Zou, Hong, 2021. "Assessing the impact of energy-saving R&D on China’s energy consumption: Evidence from dynamic spatial panel model," Energy, Elsevier, vol. 218(C).
    32. Yue‐Jun Zhang & Wei Shi & Lin Jiang, 2020. "Does China's carbon emissions trading policy improve the technology innovation of relevant enterprises?," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 872-885, March.
    33. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    34. Wang, Banban & Wei, Jie & Tan, Xiujie & Su, Bin, 2021. "The sectorally heterogeneous and time-varying price elasticities of energy demand in China," Energy Economics, Elsevier, vol. 102(C).
    35. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    36. Peng, Hua-Rong & Zhang, Yue-Jun & Liu, Jing-Yue, 2023. "The energy rebound effect of digital development: Evidence from 285 cities in China," Energy, Elsevier, vol. 270(C).
    37. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    38. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies," Applied Energy, Elsevier, vol. 233, pages 44-61.
    39. Xin Li & Chunlei Huang & Shaoguo Zhan & Yunxi Wu, 2022. "The Carbon Emission Reduction Effect of City Cluster—Evidence from the Yangtze River Economic Belt in China," Energies, MDPI, vol. 15(17), pages 1-14, August.
    40. Liu, Yaqin & Zhang, Jingchao & Zhu, Zhishuang & Zhao, Guohao, 2019. "Impacts of the 3E (economy, energy and environment) coordinated development on energy mix in China: The multi-objective optimisation perspective," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 56-64.
    41. Liu, Hongxun & Du, Kerui & Li, Jianglong, 2019. "An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand," Energy Economics, Elsevier, vol. 80(C), pages 720-730.
    42. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    43. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  75. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    3. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    4. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    5. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    6. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
    7. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    8. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    9. Gao, Zhihui & Zhang, Qi & Liu, Boyu & Liu, Jiangfeng & Wang, Ge & Ni, Ruiyan & Yang, Kexin, 2024. "The driving factors and mitigation strategy of CO2 emissions from China's passenger vehicle sector towards carbon neutrality," Energy, Elsevier, vol. 294(C).
    10. Jorge Cunha & Manuel Lopes Nunes & Fátima Lima, 2018. "Discerning the factors explaining the change in energy efficiency," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 163-179, December.
    11. Marco Vittorio Ecclesia & Tiago Domingos, 2024. "Understanding the Historical Trend of Final Energy Intensity of GDP During Economic Transitions: The Case of Portugal (1960–2014)," Energies, MDPI, vol. 17(22), pages 1-20, November.
    12. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    13. Biondi, Beatrice & Castiglione, Concetta & Mazzocchi, Mario, 2021. "Demand drivers and changes in food-related emissions in the UK: A decomposition approach," Ecological Economics, Elsevier, vol. 188(C).
    14. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
    15. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    16. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    17. Yang, Yafei & Cui, Qi & Wang, Hui, 2024. "Assessing the socioeconomic and environmental impacts of China's power sector changes in 2010–2020," Applied Energy, Elsevier, vol. 364(C).
    18. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    19. Li, Kong & Xianzhong, Mu & Guangwen, Hu, 2021. "A decomposing analysis of productive and residential energy consumption in Beijing," Energy, Elsevier, vol. 226(C).
    20. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    21. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    22. Jing Meng & Jingwen Huo & Zengkai Zhang & Yu Liu & Zhifu Mi & Dabo Guan & Kuishuang Feng, 2023. "The narrowing gap in developed and developing country emission intensities reduces global trade’s carbon leakage," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    23. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    24. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    25. Wang, Juan & Hu, Mingming & Rodrigues, João F.D., 2018. "The evolution and driving forces of industrial aggregate energy intensity in China: An extended decomposition analysis," Applied Energy, Elsevier, vol. 228(C), pages 2195-2206.
    26. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
    27. Tatsuki Ueda, 2022. "Structural Decomposition Analysis of Japan’s Energy Transitions and Related CO2 Emissions in 2005–2015 Using a Hybrid Input-Output Table," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 763-786, April.
    28. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    29. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    30. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    31. Goh, Tian & Ang, B.W., 2020. "Four reasons why there is so much confusion about energy efficiency," Energy Policy, Elsevier, vol. 146(C).
    32. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    33. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    34. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    35. Wei Fan & Chunxia Zhu & Lijun Fu & Charbel Jose Chiappetta Jabbour & Zhiyang Shen & Malin Song, 2024. "Role of land use in China’s urban energy consumption: based on a deep clustering network and decomposition analysis," Annals of Operations Research, Springer, vol. 339(1), pages 835-859, August.
    36. Jiang, Xueting, 2022. "Drivers of air pollution reduction paradox: Empirical evidence from directly measured unit-level data of Chinese power plants," Energy, Elsevier, vol. 254(PB).
    37. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    38. Zhou, Xun & Kuosmanen, Timo, 2020. "What drives decarbonization of new passenger cars?," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1043-1057.
    39. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    40. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    41. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    42. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    43. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    44. Liu, Yisheng & Yang, Meng & Cheng, Feiyu & Tian, Jinzhao & Du, Zhuoqun & Song, Pengbo, 2022. "Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method," Energy, Elsevier, vol. 256(C).
    45. Gobong Choi & Taeyoon Kim & Minchul Kim, 2021. "LMDI Decomposition Analysis of E-Waste Generation in the ASEAN," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    46. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    47. Ma, Xiaowei & Li, Chuandong & Kang, Qi & Chen, Danni & Sun, Qingyu, 2024. "Rural household nonagricultural income and energy transition: Evidence from central China," Energy Policy, Elsevier, vol. 188(C).
    48. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    49. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    50. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    51. Xianzhao Liu & Xu Yang & Ruoxin Guo, 2020. "Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
    52. Liobikienė, Genovaitė & Miceikienė, Astrida & Brizga, Janis, 2021. "Decomposition analysis of bioresources: Implementing a competitive and sustainable bioeconomy strategy in the Baltic Sea Region," Land Use Policy, Elsevier, vol. 108(C).
    53. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    54. Ali Faridzad & Mahta Ghafarian Ghadim, 2023. "CO2 intensity decomposition analysis in the Netherlands' manufacturing industry: an application of monetary and physical indicators," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8799-8817, August.
    55. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    56. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    57. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    58. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    59. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    60. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    61. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    62. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    63. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    64. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    65. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    66. Bing Liu & Bailin He & Jiaxu Zhou & Xueyan Chen & Haiyan Duan & Zhiyuan Duan, 2024. "Driving Factors and Control Strategies of the Environmental Pollution Litigation Cases in China," Sustainability, MDPI, vol. 16(22), pages 1-13, November.
    67. Lin Liu & Heinz Schandl & James West & Meng Jiang & Zijian Ren & Dingjiang Chen & Bing Zhu, 2022. "Copper ore material footprints and transfers embodied in domestic and international trade of provinces in China," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1423-1436, August.
    68. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    69. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    70. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    71. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    72. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    73. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    74. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    75. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    76. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    77. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    78. Kulionis, Viktoras & Wood, Richard, 2020. "Explaining decoupling in high income countries: A structural decomposition analysis of the change in energy footprint from 1970 to 2009," Energy, Elsevier, vol. 194(C).
    79. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    80. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    81. Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
    82. Jiang, Meihui & An, Haizhong & Gao, Xiangyun & Liu, Donghui & Jia, Nanfei & Xi, Xian, 2020. "Consumption-based multi-objective optimization model for minimizing energy consumption: A case study of China," Energy, Elsevier, vol. 208(C).
    83. Fei Wang & Changjian Wang & Xiaojie Lin & Zeng Li & Changlong Sun, 2024. "County-Level Spatiotemporal Dynamics and Driving Mechanisms of Carbon Emissions in the Pearl River Delta Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-25, November.
    84. Zhen Shi & Fengping Wu & Huinan Huang & Xinrui Sun & Lina Zhang, 2019. "Comparing Economics, Environmental Pollution and Health Efficiency in China," IJERPH, MDPI, vol. 16(23), pages 1-30, December.
    85. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    86. Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
    87. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    88. Tang, Songlin & Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Analysis of coal-related energy consumption, economic growth and intensity effects in Pakistan," Energy, Elsevier, vol. 292(C).
    89. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    90. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    91. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    92. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
    93. Kirill Muradov, 2021. "Structural decomposition analysis with disaggregate factors within the Leontief inverse," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    94. Lu, Qinli & Fang, Kai & Heijungs, Reinout & Feng, Kuishuang & Li, Jiashuo & Wen, Qi & Li, Yanmei & Huang, Xianjin, 2020. "Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative," Applied Energy, Elsevier, vol. 280(C).
    95. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    96. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    97. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    98. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    99. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    100. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    101. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    102. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    103. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
    104. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    105. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    106. Fengmei Yang & Qiuli Lv, 2024. "Analysis of Energy-Related-CO 2 -Emission Decoupling from Economic Expansion and CO 2 Drivers: The Tianjin Experience in China," Sustainability, MDPI, vol. 16(22), pages 1-18, November.
    107. Nielsen, Hana & Warde, Paul & Kander, Astrid, 2018. "East versus West: Energy intensity in coal-rich Europe, 1800–2000," Energy Policy, Elsevier, vol. 122(C), pages 75-83.
    108. Wei Sun & Yufei Hou & Lanjiang Guo, 2018. "Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries," Sustainability, MDPI, vol. 11(1), pages 1-26, December.
    109. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    110. Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    111. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    112. Hongli Zhang & Lei Shen & Shuai Zhong & Ayman Elshkaki, 2020. "Economic Structure Transformation and Low-Carbon Development in Energy-Rich Cities: The Case of the Contiguous Area of Shanxi and Shaanxi Provinces, and Inner Mongolia Autonomous Region of China," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    113. Rodrigues, João F.D. & Wang, Juan & Behrens, Paul & de Boer, Paul, 2020. "Drivers of CO2 emissions from electricity generation in the European Union 2000–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

  76. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    3. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    4. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    5. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    6. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    7. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    8. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    9. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    10. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    11. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    13. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    14. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    15. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    16. Zhonghua Cheng & Xiai Shi, 2018. "Can Industrial Structural Adjustment Improve the Total-Factor Carbon Emission Performance in China?," IJERPH, MDPI, vol. 15(10), pages 1-20, October.
    17. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    18. Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
    19. Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
    20. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    21. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    22. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    23. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    24. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    25. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    26. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    27. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    28. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    29. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    30. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    31. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    32. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    33. Jiang, Meihui & An, Haizhong & Gao, Xiangyun & Liu, Donghui & Jia, Nanfei & Xi, Xian, 2020. "Consumption-based multi-objective optimization model for minimizing energy consumption: A case study of China," Energy, Elsevier, vol. 208(C).
    34. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    35. Ping Zhou & Hailing Li, 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    36. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    37. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    38. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    39. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    40. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    41. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
    42. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    43. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    44. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    45. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.

  77. Liu, Tiantian & Wang, Qunwei & Su, Bin, 2016. "A review of carbon labeling: Standards, implementation, and impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 68-79.

    Cited by:

    1. Rui Zhao & Dingye Wu & Sebastiano Patti, 2020. "A Bibliometric Analysis of Carbon Labeling Schemes in the Period 2007–2019," Energies, MDPI, vol. 13(16), pages 1-16, August.
    2. Yonghong Cheng & Hui Sun & Fu Jia & Lenny Koh, 2018. "Pricing and Low-Carbon Investment Decisions in an Emission Dependent Supply Chain under a Carbon Labelling Scheme," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    3. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim, 2021. "Effects of rescaling the EU energy label on household preferences for top-rated appliances," Energy Policy, Elsevier, vol. 156(C).
    4. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    5. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).
    6. Su-Hyun Cho & Chang-U Chae, 2016. "A Study on Life Cycle CO 2 Emissions of Low-Carbon Building in South Korea," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    7. Atabekov, Mirlan & Bilotkach, Volodymyr & Kawata, Keisuke & Khan, Ghulam Dastgir & Miyoshi, Chikage & Sakamoto, Miyu & Yoshida, Yuichiro, 2024. "Double-edged impacts of carbon footprint information on international air travel demand," Journal of Air Transport Management, Elsevier, vol. 117(C).
    8. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    9. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    10. Ming Cao & Wei Kang & Qingren Cao & M. Jawad Sajid, 2020. "Estimating Chinese rural and urban residents’ carbon consumption and its drivers: considering capital formation as a productive input," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5443-5464, August.
    11. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    12. Fenner, Andriel Evandro & Kibert, Charles Joseph & Woo, Junghoon & Morque, Shirley & Razkenari, Mohamad & Hakim, Hamed & Lu, Xiaoshu, 2018. "The carbon footprint of buildings: A review of methodologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1142-1152.
    13. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    14. Grebitus, Carola & Steiner, Bodo & Veeman, Michele M., 2016. "Paying for sustainability: A cross-cultural analysis of consumers’ valuations of food and non-food products labeled for carbon and water footprints," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 63(C), pages 50-58.
    15. Zhimiao Tao, 2019. "Two-Stage Supply-Chain Optimization Considering Consumer Low-Carbon Awareness under Cap-and-Trade Regulation," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    16. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    17. Finnegan, Stephen & Sharples, Steve & Johnston, Tom & Fulton, Matt, 2018. "The carbon impact of a UK safari park – Application of the GHG protocol using measured energy data," Energy, Elsevier, vol. 153(C), pages 256-264.
    18. Isabel Carrero & Carmen Valor & Estela Díaz & Victoria Labajo, 2021. "Designed to Be Noticed: A Reconceptualization of Carbon Food Labels as Warning Labels," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    19. Edenbrandt, Anna Kristina & Lagerkvist, Carl Johan & Nordström, Jonas, 2021. "Interested, indifferent or active information avoiders of carbon labels: Cognitive dissonance and ascription of responsibility as motivating factors," Food Policy, Elsevier, vol. 101(C).
    20. Alessio Cimini, 2021. "Evolution of the Global Scientific Research on the Environmental Impact of Food Production from 1970 to 2020," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    21. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    22. Olsthoorn, Mark & Schleich, Joachim & Guetlein, Marie-Charlotte & Durand, Antoine & Faure, Corinne, 2023. "Beyond energy efficiency: Do consumers care about life-cycle properties of household appliances?," Energy Policy, Elsevier, vol. 174(C).
    23. Fei Ye & Lixu Li & Zhiqiang Wang & Yina Li, 2018. "An Asymmetric Nash Bargaining Model for Carbon Emission Quota Allocation among Industries: Evidence from Guangdong Province, China," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    24. Dominic Lemken & Anke Zühlsdorf & Achim Spiller, 2021. "Improving Consumers’ Understanding and Use of Carbon Footprint Labels on Food: Proposal for a Climate Score Label," EuroChoices, The Agricultural Economics Society, vol. 20(2), pages 23-29, August.
    25. Roh, Seungjun & Tae, Sungho, 2017. "An integrated assessment system for managing life cycle CO2 emissions of a building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 265-275.
    26. Ta-Ching Liang & Rospita Odorlina P. Situmorang & Mei-Chi Liao & Shu-Chun Chang, 2020. "The Relationship of Perceived Consumer Effectiveness, Subjective Knowledge, and Purchase Intention on Carbon Label Products—A Case Study of Carbon-Labeled Packaged Tea Products in Taiwan," Sustainability, MDPI, vol. 12(19), pages 1-12, September.

  78. Shihong Zeng & Mimi Hu & Bin Su, 2016. "Research on Investment Efficiency and Policy Recommendations for the Culture Industry of China Based on a Three-Stage DEA," Sustainability, MDPI, vol. 8(4), pages 1-15, March.

    Cited by:

    1. Yoon Seong Kim & Eun Jin Han & So Young Sohn, 2017. "Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    2. Xun Liu & Xiaoliang Yu & Simon Gao, 2019. "A quantitative study of financing efficiency of low‐carbon companies: A three‐stage data envelopment analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 28(5), pages 858-871, July.
    3. Jie Wu & Ganggang Zhang & Qingyuan Zhu & Zhixiang Zhou, 2020. "An efficiency analysis of higher education institutions in China from a regional perspective considering the external environmental impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 57-70, January.
    4. Wu, Yueh-Cheng & Lin, Sheng-Wei, 2022. "Efficiency evaluation of Asia's cultural tourism using a dynamic DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. Thi-Nham Le & Chia-Nan Wang, 2017. "The Integrated Approach for Sustainable Performance Evaluation in Value Chain of Vietnam Textile and Apparel Industry," Sustainability, MDPI, vol. 9(3), pages 1-21, March.
    6. Ruohan Wang & Qingjin Wang & Renbo Shi & Kaiyun Zhang & Xueling Wang, 2023. "How the Digital Economy Enables Regional Sustainable Development Using Big Data Analytics," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    7. Yihan Chi & Yongheng Fang & Jiamin Liu, 2022. "Spatial–Temporal Evolution Characteristics and Economic Effects of China’s Cultural and Tourism Industries’ Collaborative Agglomeration," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    8. Hao Jiao & Yupei Wang & Hongjun Xiao & Jianghua Zhou & Wensi Zeng, 2017. "Promoting Profit Model Innovation in Animation Project in Northeast Asia: Case Study on Chinese Cultural and Creative Industry," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    9. Linqing Fang & Zhihao Liu & Caiyu Jin, 2023. "How Does the Integration of Cultural Tourism Industry Affect Rural Revitalization? The Mediating Effect of New Urbanization," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    10. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    11. Fengge Yao & Ying Song & Xiaomei Wang, 2023. "How the Digital Economy Empowers the Structural Upgrading of Cultural Industries—An Analysis Based on the Spatial Durbin Model," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    12. Rodríguez-Huerta, Edgar & Rosas-Casals, Martí & Sorman, Alevgul H., 2017. "A societal metabolism approach to job creation and renewable energy transitions in Catalonia," Energy Policy, Elsevier, vol. 108(C), pages 551-564.
    13. Jingqi Sun & Nuermaimaiti Ruze & Jianjun Zhang & Haoran Zhao & Boyang Shen, 2019. "Evaluating the Investment Efficiency of China’s Provincial Power Grid Enterprises under New Electricity Market Reform: Empirical Evidence Based on Three-Stage DEA Model," Energies, MDPI, vol. 12(18), pages 1-17, September.
    14. Chen-En Hou & Wen-Min Lu & Shiu-Wan Hung, 2019. "Does CSR matter? Influence of corporate social responsibility on corporate performance in the creative industry," Annals of Operations Research, Springer, vol. 278(1), pages 255-279, July.
    15. Zhang, Chonghui & Jiang, Nanyue & Su, Tiantian & Chen, Ji & Streimikiene, Dalia & Balezentis, Tomas, 2022. "Spreading knowledge and technology: Research efficiency at universities based on the three-stage MCDM-NRSDEA method with bootstrapping," Technology in Society, Elsevier, vol. 68(C).
    16. Pengyu Ren & Zhaoxia Liu, 2021. "Efficiency Evaluation of China’s Public Sports Services: A Three-Stage DEA Model," IJERPH, MDPI, vol. 18(20), pages 1-12, October.
    17. Mingli Song & Guangshe Jia & Puwei Zhang, 2020. "An Evaluation of Air Transport Sector Operational Efficiency in China based on a Three-Stage DEA Analysis," Sustainability, MDPI, vol. 12(10), pages 1-16, May.
    18. Wenling Wang & Tong Chen, 2020. "Efficiency Evaluation and Influencing Factor Analysis of China’s Public Cultural Services Based on a Super-Efficiency Slacks-Based Measure Model," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    19. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.
    20. Saiah, Saiah Bekkar Djelloul & Stambouli, Amine Boudghene, 2017. "Prospective analysis for a long-term optimal energy mix planning in Algeria: Towards high electricity generation security in 2062," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 26-43.

  79. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.

    Cited by:

    1. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    2. Peirong Chen & Ruhe Xie & Mingxuan Lu, 2020. "“Resource Conservation” or “Environmental Friendliness”: How do Urban Clusters Affect Total-Factor Ecological Performance in China?," IJERPH, MDPI, vol. 17(12), pages 1-28, June.
    3. Tan, Xiujie & Choi, Yongrok & Wang, Banban & Huang, Xiaoqi, 2020. "Does China's carbon regulatory policy improve total factor carbon efficiency? A fixed-effect panel stochastic frontier analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    4. Nikos Chatzistamoulou & Phoebe Koundouri, 2020. "Environmental Efficiency, Productive Performance and Spillover Effects under heterogeneous Environmental Awareness Regimes," DEOS Working Papers 2013, Athens University of Economics and Business.
    5. Hao Zhang & Jianxin You & Xuekelaiti Haiyirete & Tianyu Zhang, 2020. "Measuring Logistics Efficiency in China Considering Technology Heterogeneity and Carbon Emission through a Meta-Frontier Model," Sustainability, MDPI, vol. 12(19), pages 1-18, October.
    6. Zhonghua Cheng & Wenwen Li, 2018. "Independent R and D, Technology Introduction, and Green Growth in China’s Manufacturing," Sustainability, MDPI, vol. 10(2), pages 1-14, January.
    7. Jiali Zheng & Han Qiao & Shouyang Wang, 2017. "The Effect of Carbon Tax in Aviation Industry on the Multilateral Simulation Game," Sustainability, MDPI, vol. 9(7), pages 1-24, July.
    8. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
    9. Zhang, Yue-Jun & Sun, Ya-Fang & Huang, Junling, 2018. "Energy efficiency, carbon emission performance, and technology gaps: Evidence from CDM project investment," Energy Policy, Elsevier, vol. 115(C), pages 119-130.
    10. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    11. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    12. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    13. Jinkai Li & Jingjing Ma & Wei Wei, 2020. "Analysis and Evaluation of the Regional Characteristics of Carbon Emission Efficiency for China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    14. Yu, Ming-Miin & See, Kok Fong & Hsiao, Bo, 2022. "Integrating group frontier and metafrontier directional distance functions to evaluate the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 301(1), pages 254-276.
    15. Lin, Boqiang & Zhu, Junpeng, 2019. "Fiscal spending and green economic growth: Evidence from China," Energy Economics, Elsevier, vol. 83(C), pages 264-271.
    16. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    17. Zhencheng Xing & Jigan Wang & Jie Zhang, 2017. "CO 2 Emission Performance, Mitigation Potential, and Marginal Abatement Cost of Industries Covered in China’s Nationwide Emission Trading Scheme: A Meta-Frontier Analysis," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    18. Qunwei Wang & Ye Hang & Jin‐Li Hu & Ching‐Ren Chiu, 2018. "An alternative metafrontier framework for measuring the heterogeneity of technology," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(5), pages 427-445, August.
    19. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    20. Ching-Ren Chiu & Ming-Chung Chang & Jin-Li Hu, 2022. "Energy intensity improvement and energy productivity changes: an analysis of BRICS and G7 countries," Journal of Productivity Analysis, Springer, vol. 57(3), pages 297-311, June.
    21. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    22. Tian, Zhiguang & Mu, Xianzhong, 2024. "Towards China's dual-carbon target: Energy efficiency analysis of cities in the Yellow River Basin based on a “geography and high-quality development” heterogeneity framework," Energy, Elsevier, vol. 306(C).
    23. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    24. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    25. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    26. Jin, Jingliang & Wen, Qinglan & Zhao, Liya & Zhou, Chaoyang & Guo, Xiaojun, 2023. "Measuring environmental performance of power dispatch influenced by low-carbon approaches," Renewable Energy, Elsevier, vol. 209(C), pages 325-339.
    27. Yu, Shasha & Yuan, Xuanyu & Yao, Xinyan & Lei, Ming, 2022. "Carbon leakage and low-carbon performance: Heterogeneity of responsibility perspectives," Energy Policy, Elsevier, vol. 165(C).
    28. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    29. Hongjun, Guan & Liye, Dong & Aiwu, Zhao, 2023. "Energy structure dividend, factor allocation efficiency and regional productivity growth-- An empirical examination of energy restructuring in China," Energy Policy, Elsevier, vol. 172(C).
    30. Bahram Fathi & Malihe Ashena & Majid Anisi, 2023. "Efficiency evaluation of sustainability indicators in a two-stage network structure: a Nash bargaining game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1832-1851, February.
    31. Zhonghua Cheng & Xiai Shi, 2018. "Can Industrial Structural Adjustment Improve the Total-Factor Carbon Emission Performance in China?," IJERPH, MDPI, vol. 15(10), pages 1-20, October.
    32. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    33. Chaofan Chen & Qingxin Lan & Ming Gao & Yawen Sun, 2018. "Green Total Factor Productivity Growth and Its Determinants in China’s Industrial Economy," Sustainability, MDPI, vol. 10(4), pages 1-25, April.
    34. Yu, Ming-Miin & Rakshit, Ipsita, 2024. "How to establish input and output targets for airlines with heterogeneous production technologies: A nash bargaining DEA approach within the meta-frontier framework," Journal of Air Transport Management, Elsevier, vol. 116(C).
    35. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    36. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    37. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    38. Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).
    39. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
    40. Wang, Yizhong & Hang, Ye & Wang, Qunwei, 2022. "Joint or separate? An economic-environmental comparison of energy-consuming and carbon emissions permits trading in China," Energy Economics, Elsevier, vol. 109(C).
    41. Qian Wang & Jinbao Yang & Yung‐ho Chiu & Tai‐Yu Lin, 2023. "Cross‐regional comparative study on digital finance and finance efficiency in China: The eastern and non‐eastern areas," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 68-83, January.
    42. Yang, Yuxue & Yu, Huimin & Su, Xiang & Wang, Rong, 2023. "Exploring the role of green finance and natural resource policies in carbon emission efficiency of China's manufacturing industry in the context of post-COVID-19 period," Resources Policy, Elsevier, vol. 86(PA).
    43. Wanke, Peter & Chen, Zhongfei & Dong, Qichen & Antunes, Jorge, 2021. "Transportation Sustainability, Macroeconomics, and Endogeneity in China: A Hybrid Neural-Markowitz-Variable Reduction Approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    44. Zhang Chenghu & Muhammad Arif & Khurram Shehzad & Mahmood Ahmad & Judit Oláh, 2021. "Modeling the Dynamic Linkage between Tourism Development, Technological Innovation, Urbanization and Environmental Quality: Provincial Data Analysis of China," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    45. Lin, Ruiyue & Peng, Yudan, 2024. "A new cross-efficiency meta-frontier analysis method with good ability to identify technology gaps," European Journal of Operational Research, Elsevier, vol. 314(2), pages 735-746.
    46. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    47. Ding, Tao & Yang, Jie & Wu, Huaqing & Liang, Liang, 2022. "Land use efficiency and technology gaps of urban agglomerations in China: An extended non-radial meta-frontier approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    48. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    49. Zhao, Linlin & Zha, Yong & Zhuang, Yuliang & Liang, Liang, 2019. "Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1083-1095.
    50. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    51. Feng, Chao & Wang, Miao & Liu, Guan-Chun & Huang, Jian-Bai, 2017. "Sources of economic growth in China from 2000–2013 and its further sustainable growth path: A three-hierarchy meta-frontier data envelopment analysis," Economic Modelling, Elsevier, vol. 64(C), pages 334-348.

  80. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.

    Cited by:

    1. Menegaki, Angeliki N. & Marques, António Cardoso & Fuinhas, José Alberto, 2017. "Redefining the energy-growth nexus with an index for sustainable economic welfare in Europe," Energy, Elsevier, vol. 141(C), pages 1254-1268.
    2. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    3. Wang, Xue & Fan, Li-Wei & Zhang, Hongyan, 2023. "Policies for enhancing patent quality: Evidence from renewable energy technology in China," Energy Policy, Elsevier, vol. 180(C).
    4. Eka Sudarmaji & Noer Azam Achsani & Yandra Arkeman & Idqan Fahmi, 2022. "Decomposition Factors Household Energy Subsidy Consumption in Indonesia: Kaya Identity and Logarithmic Mean Divisia Index Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 355-364.
    5. Zhang, Guoxing & Nuruzzaman, Md & Su, Bin, 2021. "Nexus between household energy consumption and economic growth in Bangladesh (1975–2018)," Energy Policy, Elsevier, vol. 156(C).
    6. Lee, Chien-Chiang & Wang, Chang-song, 2022. "Does natural resources matter for sustainable energy development in China: The role of technological progress," Resources Policy, Elsevier, vol. 79(C).
    7. Chen, Sai & Song, Yan & Zhang, Ming, 2021. "Study on the sustainability evaluation and development path selection of China’s coal base from the perspective of spatial field," Energy, Elsevier, vol. 215(PA).
    8. Tiancai Xing & Qichuan Jiang & Xuejiao Ma, 2017. "To Facilitate or Curb? The Role of Financial Development in China’s Carbon Emissions Reduction Process: A Novel Approach," IJERPH, MDPI, vol. 14(10), pages 1-39, October.
    9. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    10. Zhu, Xiaodong & Zhu, Zheng & Zhu, Bangzhu & Wang, Ping, 2022. "The determinants of energy choice for household cooking in China," Energy, Elsevier, vol. 260(C).
    11. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    12. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    13. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    14. Angeliki N. Menegaki, 2021. "Towards a Global Energy-Sustainable Economy Nexus; Summing up Evidence from Recent Empirical Work," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Li, Jianglong & Chen, Chang & Liu, Hongxun, 2019. "Transition from non-commercial to commercial energy in rural China: Insights from the accessibility and affordability," Energy Policy, Elsevier, vol. 127(C), pages 392-403.
    16. Wang, Deqing & Tian, Sihua & Fang, Lei & Xu, Yan, 2020. "A functional index model for dynamically evaluating China's energy security," Energy Policy, Elsevier, vol. 147(C).
    17. Xiaoxia Zhang & Tonggang Zha & Yun Zhao & Jing Qin & Zhiyuan Lyv & Zhijie Ma & Haiyan Yu & Yushen Zhu & Gaomin Wang & Felix Tettenborn & Benedikt Freiherr von Lueninck, 2017. "Sustainable Effects of Small Hydropower Substituting Firewood Program in Majiang County, Guizhou Province, China," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
    18. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  81. Ju, Keyi & Su, Bin & Zhou, Dequn & Zhang, Yuqiang, 2016. "An incentive-oriented early warning system for predicting the co-movements between oil price shocks and macroeconomy," Applied Energy, Elsevier, vol. 163(C), pages 452-463.

    Cited by:

    1. Ding, Zhihua & Liu, Zhenhua & Zhang, Yuejun & Long, Ruyin, 2017. "The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment," Applied Energy, Elsevier, vol. 187(C), pages 27-36.
    2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    3. Wang, Gang & Sharma, Paritosh & Jain, Vipin & Shukla, Avanish & Shahzad Shabbir, Malik & Tabash, Mosab I. & Chawla, Chanchal, 2022. "The relationship among oil prices volatility, inflation rate, and sustainable economic growth: Evidence from top oil importer and exporter countries," Resources Policy, Elsevier, vol. 77(C).
    4. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2016. "Oil price and exchange rate in India: Fresh evidence from continuous wavelet approach and asymmetric, multi-horizon Granger-causality tests," Applied Energy, Elsevier, vol. 179(C), pages 272-283.
    5. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin & Liu, Lifan, 2016. "Macroeconomic performance of oil price shocks: Outlier evidence from nineteen major oil-related countries/regions," Energy Economics, Elsevier, vol. 60(C), pages 325-332.
    6. Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
    7. Yong Qin & Zeshui Xu & Xinxin Wang & Marinko Skare, 2024. "Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 1736-1770, March.
    8. Chen, Jinyu & Wang, Yilin & Ren, Xiaohang, 2022. "Asymmetric effects of non-ferrous metal price shocks on clean energy stocks: Evidence from a quantile-on-quantile method," Resources Policy, Elsevier, vol. 78(C).
    9. van Eyden, Reneé & Difeto, Mamothoana & Gupta, Rangan & Wohar, Mark E., 2019. "Oil price volatility and economic growth: Evidence from advanced economies using more than a century’s data," Applied Energy, Elsevier, vol. 233, pages 612-621.

  82. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.

    Cited by:

    1. Luqi Wang & Xiaolong Xue & Yue Shi & Zeyu Wang & Ankang Ji, 2018. "A Dynamic Analysis to Evaluate the Environmental Performance of Cities in China," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    2. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    3. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    5. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    6. Rasli, Amran Md. & Qureshi, Muhammad Imran & Isah-Chikaji, Aliyu & Zaman, Khalid & Ahmad, Mehboob, 2018. "New toxics, race to the bottom and revised environmental Kuznets curve: The case of local and global pollutants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3120-3130.
    7. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    8. Haitao Wu & Mengzhe Sun & Wenjia Zhang & Yunxia Guo & Muhammad Irfan & Mingyue Lu & Yu Hao, 2024. "Can urbanization move ahead with energy conservation and emission reduction? New evidence from China," Energy & Environment, , vol. 35(3), pages 1288-1314, May.
    9. Weiwei Xie & Hongbing Deng & Zhaohui Chong, 2019. "The Spatial and Heterogeneity Impacts of Population Urbanization on Fine Particulate (PM 2.5 ) in the Yangtze River Economic Belt, China," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
    10. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    11. Huang, Fei & Zhou, Dequn & Hu, Jin-Li & Wang, Qunwei, 2020. "Integrated airline productivity performance evaluation with CO2 emissions and flight delays," Journal of Air Transport Management, Elsevier, vol. 84(C).
    12. Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
    13. Meiqiang Wang & Yingwen Chen & Zhixiang Zhou, 2020. "A Novel Stochastic Two-Stage DEA Model for Evaluating Industrial Production and Waste Gas Treatment Systems," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    14. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    15. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    16. Sun, Chuanwang & Zhang, Wenyue & Luo, Yuan & Xu, Yonghong, 2019. "The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China's rail transit construction," Energy Policy, Elsevier, vol. 129(C), pages 949-957.
    17. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    18. Lizhan Cao & Zhongying Qi & Junxia Ren, 2017. "China’s Industrial Total-Factor Energy Productivity Growth at Sub-Industry Level: A Two-Step Stochastic Metafrontier Malmquist Index Approach," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    19. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    20. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
    21. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    22. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    23. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    24. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    25. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    26. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.

  83. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin & Liu, Lifan, 2016. "Macroeconomic performance of oil price shocks: Outlier evidence from nineteen major oil-related countries/regions," Energy Economics, Elsevier, vol. 60(C), pages 325-332.

    Cited by:

    1. Su, Zhi & Lu, Man & Yin, Libo, 2018. "Oil prices and news-based uncertainty: Novel evidence," Energy Economics, Elsevier, vol. 72(C), pages 331-340.
    2. Yildirim, Zekeriya & Arifli, Arif, 2021. "Oil price shocks, exchange rate and macroeconomic fluctuations in a small oil-exporting economy," Energy, Elsevier, vol. 219(C).
    3. Delpachitra, Sarath & Hou, Keqiang & Cottrell, Simon, 2020. "The impact of oil price shocks in the Canadian economy: A structural investigation on an oil-exporting economy," Energy Economics, Elsevier, vol. 91(C).
    4. Lin, Jie & Xiao, Hao & Chai, Jian, 2023. "Dynamic effects and driving intermediations of oil price shocks on major economies," Energy Economics, Elsevier, vol. 124(C).
    5. Byers, J.W. & Popova, I. & Simkins, B.J., 2021. "Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers," Journal of Commodity Markets, Elsevier, vol. 24(C).
    6. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
    7. Rehman, Mobeen Ur & Vo, Xuan Vinh & McIver, Ron & Kang, Sang Hoon, 2022. "Sensitivity of US sectoral returns to energy commodities under different investment horizons and market conditions," Energy Economics, Elsevier, vol. 108(C).
    8. Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2024. "The impact of Russia–Ukraine war on crude oil prices: an EMC framework," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    9. Victoriia Alekhina & Naoyuki Yoshino, 2019. "Exogeneity of world oil prices to the Russian Federation’s economy and monetary policy," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 9(4), pages 531-555, December.
    10. Zhang, Chuanguo & Liu, Feng & Yu, Danlin, 2018. "Dynamic jumps in global oil price and its impacts on China's bulk commodities," Energy Economics, Elsevier, vol. 70(C), pages 297-306.
    11. Olexandr Yemelyanov & Anastasiya Symak & Tetyana Petrushka & Roman Lesyk & Lilia Lesyk, 2018. "Evaluation of the Adaptability of the Ukrainian Economy to Changes in Prices for Energy Carriers and to Energy Market Risks," Energies, MDPI, vol. 11(12), pages 1-34, December.
    12. Belhassine, Olfa, 2020. "Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises," Research in International Business and Finance, Elsevier, vol. 53(C).
    13. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    14. Kamaruddin Kamaruddin & Yusri Hazmi & Raja Masbar & Sofyan Syahnur & M. Shabri Abd. Majid, 2021. "Asymmetric Impact of World Oil Prices on Marketing Margins: Application of NARDL Model for the Indonesian Coffee," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 212-220.
    15. Jin Shang & Shigeyuki Hamori, 2020. "The Response of US Macroeconomic Aggregates to Price Shocks in Crude Oil vs. Natural Gas," Energies, MDPI, vol. 13(10), pages 1-17, May.
    16. Zhang, Qi & Yang, Kun & Hu, Yi & Jiao, Jianbin & Wang, Shouyang, 2023. "Unveiling the impact of geopolitical conflict on oil prices: A case study of the Russia-Ukraine War and its channels," Energy Economics, Elsevier, vol. 126(C).
    17. Iztok Podbregar & Goran Šimić & Mirjana Radovanović & Sanja Filipović & Damjan Maletič & Polona Šprajc, 2020. "The International Energy Security Risk Index in Sustainable Energy and Economy Transition Decision Making—A Reliability Analysis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    18. Pazouki, Azadeh & Zhu, Xiaoxian, 2022. "The dynamic impact among oil dependence volatility, the quality of political institutions, and government spending," Energy Economics, Elsevier, vol. 115(C).
    19. Long, Shaobo & Zhang, Rui, 2022. "The asymmetric effects of international oil prices, oil price uncertainty and income on urban residents’ consumption in China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 789-805.
    20. Sanginabadi, Bahram, 2021. "Oil and Mortality," OSF Preprints j2xqw, Center for Open Science.
    21. Olexandr Yemelyanov & Anastasiya Symak & Tetyana Petrushka & Olena Zahoretska & Myroslava Kusiy & Roman Lesyk & Lilia Lesyk, 2019. "Changes in Energy Consumption, Economic Growth and Aspirations for Energy Independence: Sectoral Analysis of Uses of Natural Gas in Ukrainian Economy," Energies, MDPI, vol. 12(24), pages 1-34, December.
    22. Elsayed, Ahmed H. & Naifar, Nader & Uddin, Gazi Salah & Wang, Gang-Jin, 2023. "Multilayer information spillover networks between oil shocks and banking sectors: Evidence from oil-rich countries," International Review of Financial Analysis, Elsevier, vol. 87(C).
    23. Abdollah Mahmoodi, 2017. "Oil price reduction impacts on the Iranian economy," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 35(2), pages 353-374.

  84. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Zhang, Hui & Fahlevi, Mochammad & Aljuaid, Mohammed & Beşer, Nazife Özge & Cabas, Meral & lominchar, Jose, 2024. "A machine learning and quantile analysis of FINTECH and resource efficiency in achieving sustainable development in OECD countries," Resources Policy, Elsevier, vol. 92(C).
    3. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    4. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    5. Liu, Huizheng & Zong, Zhe & Hynes, Kate & De Bruyne, Karolien, 2020. "Can China reduce the carbon emissions of its manufacturing exports by moving up the global value chain?," Research in International Business and Finance, Elsevier, vol. 51(C).
    6. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    8. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    9. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    10. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    11. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    12. Yingying Hu & Wei Wu, 2022. "Spatiotemporal Variation and Driving Factors of Embodied Carbon in China-G7 Trade," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    13. Ma, Ning & Sun, WenLi & Li, Huajiao & Zhou, Xing & Sun, Yihua & Ren, Bo, 2023. "Industrial linkage of global carbon emissions: A heterogeneous ownership perspective," Energy Policy, Elsevier, vol. 172(C).
    14. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    15. Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
    16. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    17. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    18. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Pan, An, 2023. "Global value chain and export-embodied carbon emissions: New evidence from foreign-invested enterprises," Economic Modelling, Elsevier, vol. 127(C).
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    20. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    21. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    22. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    23. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    24. Sylvain Weber & Reyer Gerlagh & Nicole A. Mathys & Daniel Moran, 2019. "CO2 embedded in trade: trends and fossil fuel drivers," CESifo Working Paper Series 7562, CESifo.
    25. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    26. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    27. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    28. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    29. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    30. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    31. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    32. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    33. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    34. Liyin Shen & Yingli Lou & Yali Huang & Jindao Chen, 2018. "A driving–driven perspective on the key carbon emission sectors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 349-371, August.
    35. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    36. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    37. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    38. Le Niu & Jiaoyue Wang & Hongyan Zhao & Mingjing Ma & Fengming Xi, 2024. "Identification and Evaluation of Synergy Between Carbon Emissions and Air Pollutants in Inter-Industrial Trade Among Provinces in China," Sustainability, MDPI, vol. 16(20), pages 1-16, October.
    39. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    40. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    41. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    42. Yuan, Kaihua & Cui, Jingyuan & Zhang, Haipeng & Gao, Xiang, 2023. "Do cleaner production standards upgrade the global value chain position of manufacturing enterprises? Empirical evidence from China," Energy Economics, Elsevier, vol. 128(C).
    43. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    44. Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.
    45. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    46. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    47. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    48. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    49. Zhipeng Tang & Jialing Zou & Shuang Wu, 2018. "What Drove Changes in the Embodied Energy Consumption of Guangdong’s Exports from 2007–2012?," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    50. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    51. Deng, Wenyueyang & Zhang, Zenglian & Guo, Borui, 2024. "Firm-level carbon risk awareness and Green transformation: A research on the motivation and consequences from government regulation and regional development perspective," International Review of Financial Analysis, Elsevier, vol. 91(C).
    52. Guimei Zhang & Guangyue Liu, 2023. "Does Global Value Chain Embedment Contribute to Environmental Pollution in Emerging Economies?," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    53. Yan, Yunfeng & Wang, Ran & Zheng, Xiuxiu & Zhao, Zhongxiu, 2020. "Carbon endowment and trade-embodied carbon emissions in global value chains: Evidence from China," Applied Energy, Elsevier, vol. 277(C).
    54. Shichun Xu & Chang Gao & Yunfan Li & Xiaoxue Ma & Yifeng Zhou & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Influences the Cross-Border Air Pollutant Transfer in China–United States Trade: A Comparative Analysis Using the Extended IO-SDA Method," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    55. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    56. Xuemei Jiang & Huijuan Wang & Yan Xia, 2020. "Economic structural change, renewable energy development, and carbon dioxide emissions in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1345-1362, October.

  85. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.

    Cited by:

    1. Yoon Seong Kim & Eun Jin Han & So Young Sohn, 2017. "Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations," Sustainability, MDPI, vol. 9(2), pages 1-16, January.
    2. Sicen Liu & Xiaodong Chen & Zhiyang Shen & Tomas Baležentis, 2022. "Industrial energy consumption and pollutant emissions: Combined decomposition of relative performance and absolute changes," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3454-3469, November.
    3. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    4. Xinna Zhao & Chongwen Zhong, 2017. "Low Carbon Economy Performance Analysis with the Intertemporal Effect of Capital in China," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    5. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    6. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    7. Haiqiao Wang & Li Shang & Decai Tang & Zhijiang Li, 2024. "Research Themes, Evolution Trends, and Future Challenges in China’s Carbon Emission Studies," Sustainability, MDPI, vol. 16(5), pages 1-22, March.
    8. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    10. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    11. Liu, Xiping & Zhang, Xiaoling & Sun, Wen, 2022. "Does the agglomeration of urban producer services promote carbon efficiency of manufacturing industry?," Land Use Policy, Elsevier, vol. 120(C).
    12. Jiekun Song & Rui Chen & Xiaoping Ma, 2022. "Provincial Allocation of Energy Consumption, Air Pollutant and CO 2 Emission Quotas in China: Based on a Weighted Environment ZSG-DEA Model," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. Qian Wang & Duo Li & Tzu-Han Chang, 2019. "Energy and Health Efficiencies in China with the Inclusion of Technological Innovation," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    14. Ke-Liang Wang & Li-Li Ding & Jian-Min Wang & Mian Yang, 2020. "Analysis of provincial total-factor air pollution efficiency in China by using context-dependent slacks-based measure considering undesirable outputs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1899-1921, November.
    15. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    16. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    17. Jinkai Li & Jingjing Ma & Wei Wei, 2020. "Analysis and Evaluation of the Regional Characteristics of Carbon Emission Efficiency for China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    18. Feng, Yingjie & Zhu, Aikong & Wang, Jingya & Xia, Ke & Liu, Zhenglan, 2023. "Study on the low-carbon development under a resources-dependent framework of water-land -energy utilization: Evidence from the Yellow River Basin, China," Energy, Elsevier, vol. 280(C).
    19. Shaojian Qu & Yuting Xu & Ying Ji & Can Feng & Jinpeng Wei & Shan Jiang, 2022. "Data-Driven Robust Data Envelopment Analysis for Evaluating the Carbon Emissions Efficiency of Provinces in China," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    20. Walter Leal Filho & Mariia Fedoruk & Lyudmyla Zahvoyska & Lucas Veiga Avila, 2021. "Identifying and Comparing Obstacles and Incentives for the Implementation of Energy Saving Projects in Eastern and Western European Countries: An Exploratory Study," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    21. Haihong Song & Liyuan Gu & Yifan Li & Xin Zhang & Yuan Song, 2022. "Research on Carbon Emission Efficiency Space Relations and Network Structure of the Yellow River Basin City Cluster," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    22. Yu, Bolin & Fang, Debin & Pan, Yuling & Jia, Yunxia, 2023. "Countries’ green total-factor productivity towards a low-carbon world: The role of energy trilemma," Energy, Elsevier, vol. 278(PB).
    23. Inmaculada Carrasco & Juan Sebastián Castillo-Valero & Carmen Córcoles & Marcos Carchano, 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    24. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    25. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    26. Li, Han & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Jia, Jie & Ye, Tianzhen & Zou, Lanjun, 2017. "Modelling of AQI related to building space heating energy demand based on big data analytics," Applied Energy, Elsevier, vol. 203(C), pages 57-71.
    27. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    28. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    29. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    30. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    31. Guo, Ran & Yuan, Yijun, 2020. "Different types of environmental regulations and heterogeneous influence on energy efficiency in the industrial sector: Evidence from Chinese provincial data," Energy Policy, Elsevier, vol. 145(C).
    32. Rongrong Xu & Yongxiang Wu & Gaoxu Wang & Xuan Zhang & Wei Wu & Zan Xu, 2019. "Evaluation of industrial water use efficiency considering pollutant discharge in China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    33. Xiaoming Jiang & Chuiyong Zheng & Chao Liu & Wenjian Zhang, 2020. "Coupling between Carbon Efficiency and Technology Absorptive Capacity—A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    34. Tiancai Xing & Qichuan Jiang & Xuejiao Ma, 2017. "To Facilitate or Curb? The Role of Financial Development in China’s Carbon Emissions Reduction Process: A Novel Approach," IJERPH, MDPI, vol. 14(10), pages 1-39, October.
    35. Linlin Zhao & Lin Zhang & Yong Zha, 2019. "Industrial Efficiency Evaluation in China: A Nonparametric Production-Frontier Approach," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    36. Tan, Shukui & Hu, Bixia & Kuang, Bing & Zhou, Min, 2021. "Regional differences and dynamic evolution of urban land green use efficiency within the Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 106(C).
    37. Fan, Meiting & Li, Mengxu & Liu, Jianghua & Shao, Shuai, 2022. "Is high natural resource dependence doomed to low carbon emission efficiency? Evidence from 283 cities in China," Energy Economics, Elsevier, vol. 115(C).
    38. Huaming Chen & Jia Liu & Ying Li & Yung-Ho Chiu & Tai-Yu Lin, 2019. "A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency," IJERPH, MDPI, vol. 16(9), pages 1-23, April.
    39. Sun Meng & Wei Zhou & Jin Chen & Cheng Zhang, 2018. "A synthesized data envelopment analysis model and its application in resource efficiency evaluation and dynamic trend analysis," Energy & Environment, , vol. 29(2), pages 260-280, March.
    40. Ning Xu & He Zhang & Tixin Li & Xiao Ling & Qian Shen, 2022. "How Big Data Affect Urban Low-Carbon Transformation—A Quasi-Natural Experiment from China," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    41. Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
    42. Li, Ye & Chen, Yiyan & Li, Qun, 2020. "Assessment analysis of green development level based on S-type cloud model of Beijing-Tianjin-Hebei, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    43. Lianshui Li & Yang Cai & Liang Liu, 2019. "Research on the Effect of Urbanization on China’s Carbon Emission Efficiency," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    44. Lin Zhang and Philip Kofi Adom, 2018. "Energy Efficiency Transitions in China: How Persistent are the Movements to/from the Frontier?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    45. Lee, Junghwan & Kim, Jinsoo, 2023. "Are electric vehicles more efficient? A slacks-based data envelopment analysis for European road passenger transportation," Energy, Elsevier, vol. 279(C).
    46. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    47. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    48. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    49. Daraio, Cinzia & Kerstens, Kristiaan & Nepomuceno, Thyago & Sickles, Robin C., 2019. "Empirical Surveys of Frontier Applications: A Meta-Review," Working Papers 19-005, Rice University, Department of Economics.
    50. John M. DeCicco, 2018. "Methodological Issues Regarding Biofuels and Carbon Uptake," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    51. Yiru Jiang & Xinjun Wang, 2024. "Evaluation, Driving Mechanism and Spatial Correlation Analysis of Atmospheric Environmental Efficiency in the “2+26” Cities Based on the Nonradial MEA Model," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    52. Zhang, Wei & Liu, Xuemeng & Zhao, Shikuan & Tang, Tian, 2024. "Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover," Applied Energy, Elsevier, vol. 358(C).
    53. Lin, Boqiang & Xu, Mengmeng, 2019. "Good subsidies or bad subsidies? Evidence from low-carbon transition in China's metallurgical industry," Energy Economics, Elsevier, vol. 83(C), pages 52-60.
    54. Zhang, Puwei & You, Jianxin & Jia, Guangshe & Chen, Jindao & Yu, Anyu, 2018. "Estimation of carbon efficiency decomposition in materials and potential material savings for China's construction industry," Resources Policy, Elsevier, vol. 59(C), pages 148-159.
    55. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    56. Yong Wang & Han Zhao & Fumei Duan & Ying Wang, 2018. "Initial Provincial Allocation and Equity Evaluation of China’s Carbon Emission Rights—Based on the Improved TOPSIS Method," Sustainability, MDPI, vol. 10(4), pages 1-27, March.
    57. Cai, Bofeng & Guo, Huanxiu & Ma, Zipeng & Wang, Zhixuan & Dhakal, Shobhakar & Cao, Libin, 2019. "Benchmarking carbon emissions efficiency in Chinese cities: A comparative study based on high-resolution gridded data," Applied Energy, Elsevier, vol. 242(C), pages 994-1009.
    58. Muhammad Usman & Zhiqiang Ma & Muhammad Wasif Zafar & Abdul Haseeb & Rana Umair Ashraf, 2019. "Are Air Pollution, Economic and Non-Economic Factors Associated with Per Capita Health Expenditures? Evidence from Emerging Economies," IJERPH, MDPI, vol. 16(11), pages 1-22, June.
    59. Rongrong Liu & Dong Chen & Suchang Yang & Yang Chen, 2021. "Evaluation of Green Development Efficiency of the Major Cities in Gansu Province, China," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    60. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    61. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    62. Wen, Quan & Hong, Jingke & Liu, Guiwen & Xu, Pengpeng & Tang, Miaohan & Li, Zhongfu, 2020. "Regional efficiency disparities in China’s construction sector: A combination of multiregional input–output and data envelopment analyses," Applied Energy, Elsevier, vol. 257(C).
    63. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
    64. de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
    65. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    66. Keyi Duan & Mingyao Cao & Nurhafiza Abdul Kader Malim & Yan Song, 2022. "Nonlinear Relationship between Financial Development and CO 2 Emissions—Based on a PSTR Model," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    67. Wei Yang & Zudi Lu & Di Wang & Yanmin Shao & Jinfeng Shi, 2020. "Sustainable Evolution of China’s Regional Energy Efficiency Based on a Weighted SBM Model with Energy Substitutability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.
    68. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    69. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    70. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    71. Weicheng Xu & Xiaoyi Feng & Yiying Zhu, 2023. "The Impact of Green Finance on Carbon Emissions in China: An Energy Consumption Optimization Perspective," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    72. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
    73. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    74. Zheng, Saina & Lam, Chor-Man & Hsu, Shu-Chien & Ren, Jingzheng, 2018. "Evaluating efficiency of energy conservation measures in energy service companies in China," Energy Policy, Elsevier, vol. 122(C), pages 580-591.
    75. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    76. Chen, Ya & Pan, Yongbin & Wang, Mengyuan & Ding, Tao & Zhou, Zhixiang & Wang, Ke, 2023. "How do industrial sectors contribute to carbon peaking and carbon neutrality goals? A heterogeneous energy efficiency analysis for Beijing," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 67-80.
    77. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    78. Shabani, Mohadeseh & Kordrostami, Sohrab & Jahani Sayyad Noveiri, Monireh, 2023. "Renewable energy performance analysis using fuzzy dynamic directional distance function model under natural and managerial disposability," Applied Energy, Elsevier, vol. 352(C).
    79. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    80. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    81. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    82. Boban Djordjević & Evelin Krmac, 2019. "Evaluation of Energy-Environment Efficiency of European Transport Sectors: Non-Radial DEA and TOPSIS Approach," Energies, MDPI, vol. 12(15), pages 1-27, July.
    83. Xing, Menglin & Liu, Xiaojun & Luo, Fuzhou, 2023. "How does the development of urban agglomeration affect the electricity efficiency of resource-based cities?—An empirical research based on the fsQCA method," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    84. Gao, Yuning & Zhang, Meichen & Zheng, Jinghai, 2021. "Accounting and determinants analysis of China's provincial total factor productivity considering carbon emissions," China Economic Review, Elsevier, vol. 65(C).
    85. Zhang, Mingming & Pang, Zhichao & Liu, Liyun & Yang, Zikun & Zhou, Dequn, 2024. "Risk assessment of China's overseas energy investments considering the response ability to major risk events: A case study of COVID-19," Energy, Elsevier, vol. 288(C).
    86. Zhang, Sheng & Yu, Ran & Wen, Zuhui & Xu, Jiayu & Liu, Peihan & Zhou, Yunqiao & Zheng, Xiaoqi & Wang, Lei & Hao, Jiming, 2023. "Impact of labor and energy allocation imbalance on carbon emission efficiency in China's industrial sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    87. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    88. Liu, Xiaohong & Yang, Jiangjiang & Xu, Chengzhen & Li, Xingchen & Zhu, Qingyuan, 2023. "Environmental regulation efficiency analysis by considering regional heterogeneity," Resources Policy, Elsevier, vol. 83(C).
    89. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    90. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    91. Margaréta Halická & Mária Trnovská, 2018. "Negative features of hyperbolic and directional distance models for technologies with undesirable outputs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(4), pages 887-907, December.
    92. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    93. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    94. Chao Wang & Yuxiao Kong & Xingliang Lu & Hongyi Xie & Yanmin Teng & Jinyan Zhan, 2024. "Rethinking Regional High-Quality Development Pathways from a Carbon Emission Efficiency Perspective," Land, MDPI, vol. 13(9), pages 1-18, September.
    95. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.

  86. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Xu, Jiuping & Yang, Guocan & Wang, Fengjuan & Shu, Kejing, 2022. "A provincial renewable portfolio standards-based distribution strategy for both power plant and user: A case study from Guangdong, China," Energy Policy, Elsevier, vol. 165(C).
    3. Huang, Rui & Lv, Guonian, 2021. "The climate economic effect of technology spillover," Energy Policy, Elsevier, vol. 159(C).
    4. Sigurjónsson, Hafþór Ægir & Cook, David & Davíðsdóttir, Brynhildur & Bogason, Sigurður G., 2021. "A life-cycle analysis of deep enhanced geothermal systems – The case studies of Reykjanes, Iceland and Vendenheim, France," Renewable Energy, Elsevier, vol. 177(C), pages 1076-1086.
    5. Li, Houjian & Cao, Andi & Twumasi, Martinson Ankrah & Zhang, Hongzhen & Zhong, Shunbin & Guo, Lili, 2023. "Do female cadres improve clean energy accessibility in villages? Evidence from rural China," Energy Economics, Elsevier, vol. 126(C).
    6. Jingyi Xie & Yan Xu & Haixiao Li, 2021. "Environmental impact of express food delivery in China: the role of personal consumption choice," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8234-8251, June.
    7. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Coal and economic development in Pakistan: A necessity of energy source," Energy, Elsevier, vol. 207(C).
    8. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Henriques, Sofia Teives & Borowiecki, Karol J., 2017. "The drivers of long-run CO2 emissions in Europe, North America and Japan since 1800," Energy Policy, Elsevier, vol. 101(C), pages 537-549.
    10. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    11. Ying Sun & Long Qian & Zhi Liu, 2022. "The carbon emissions level of China’s service industry: an analysis of characteristics and influencing factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13557-13582, December.
    12. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    13. Huiqiang Ma & Jiale Liu & Jianchao Xi, 2022. "Decoupling and decomposition analysis of carbon emissions in Beijing’s tourism traffic," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5258-5274, April.
    14. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    15. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    16. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    17. Ming, Wei & Nazifi, Fatemeh & Trück, Stefan, 2024. "Emission intensities in the Australian National Electricity Market – An econometric analysis," Energy Economics, Elsevier, vol. 129(C).
    18. Manuela Tvaronavičienė & Evgeny Lisin & Vladimir Kindra, 2020. "Power Market Formation for Clean Energy Production as the Prerequisite for the Country’s Energy Security," Energies, MDPI, vol. 13(18), pages 1-14, September.
    19. Zbigniew Golas, 2021. "Energy-Related Greenhouse Gas Emissions in Poland from 2000 to 2018: An LMDI Decomposition Analysis Perspective," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 1243-1257.
    20. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    21. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    22. Hongwei Xiao & Zhongyu Ma & Peng Zhang & Ming Liu, 2019. "Study of the impact of energy consumption structure on carbon emission intensity in China from the perspective of spatial effects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1365-1380, December.
    23. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    24. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    25. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
    26. Felício, Laura & Henriques, Sofia Teives & Guevara, Zeus & Sousa, Tânia, 2024. "From electrification to decarbonization: Insights from Portugal's experience (1960–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    27. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    28. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    29. Melissa Valencia-Duque & Juan Zapata-Mina & Juan E. Tibaquir & Juan Carlos Castillo, 2023. "Sustainability Analysis of Electricity Generation in Colombia through the Projection of Energy Efficiency Indicators," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 255-263, July.
    30. Pinto, Ricardo & Henriques, Sofia T. & Brockway, Paul E. & Heun, Matthew Kuperus & Sousa, Tânia, 2023. "The rise and stall of world electricity efficiency:1900–2017, results and insights for the renewables transition," Energy, Elsevier, vol. 269(C).
    31. Bai, Hongtao & Feng, Xiangyu & Hou, Huimin & He, Gang & Dong, Yan & Xu, He, 2018. "Mapping inter-industrial CO2 flows within China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 400-408.
    32. Valadkhani, Abbas & Nguyen, Jeremy & Bowden, Mark, 2019. "Pathways to reduce CO2 emissions as countries proceed through stages of economic development," Energy Policy, Elsevier, vol. 129(C), pages 268-278.
    33. Gilang Hardadi & Alexander Buchholz & Stefan Pauliuk, 2021. "Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 95-113, February.
    34. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    35. Magdalena Wójcik-Jurkiewicz & Marzena Czarnecka & Grzegorz Kinelski & Beata Sadowska & Katarzyna Bilińska-Reformat, 2021. "Determinants of Decarbonisation in the Transformation of the Energy Sector: The Case of Poland," Energies, MDPI, vol. 14(5), pages 1-22, February.
    36. Yilmaz Bayar & Laura Diaconu (Maxim) & Andrei Maxim, 2020. "Financial Development and CO 2 Emissions in Post-Transition European Union Countries," Sustainability, MDPI, vol. 12(7), pages 1-15, March.
    37. Maciej Ciołek & Izabela Emerling & Katarzyna Olejko & Beata Sadowska & Magdalena Wójcik-Jurkiewicz, 2022. "Assumptions of the Energy Policy of the Country versus Investment Outlays Related to the Purchase of Alternative Fuels: Poland as a Case Study," Energies, MDPI, vol. 15(5), pages 1-18, March.
    38. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    39. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    40. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    41. Huang, Chenchen & Lin, Boqiang, 2023. "Promoting decarbonization in the power sector: How important is digital transformation?," Energy Policy, Elsevier, vol. 182(C).
    42. Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
    43. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    44. Wang, Hongye & Su, Bin & Mu, Hailin & Li, Nan & Gui, Shusen & Duan, Ye & Jiang, Bo & Kong, Xue, 2020. "Optimal way to achieve renewable portfolio standard policy goals from the electricity generation, transmission, and trading perspectives in southern China," Energy Policy, Elsevier, vol. 139(C).
    45. Yu, Bolin & Fang, Debin & Dong, Feng, 2020. "Study on the evolution of thermal power generation and its nexus with economic growth: Evidence from EU regions," Energy, Elsevier, vol. 205(C).
    46. Yunji Kim & Inhong Min & Jieun Lee & Heena Yang, 2024. "An Analysis of Greenhouse Gas Emissions in Electrolysis for Certifying Clean Hydrogen," Energies, MDPI, vol. 17(15), pages 1-16, July.
    47. Ahmed Younis & René Benders & Jezabel Ramírez & Merlijn de Wolf & André Faaij, 2022. "Scrutinizing the Intermittency of Renewable Energy in a Long-Term Planning Model via Combining Direct Integration and Soft-Linking Methods for Colombia’s Power System," Energies, MDPI, vol. 15(20), pages 1-24, October.
    48. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    49. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    50. Xing Zhao & Xin Zhang, 2022. "Research on the Evaluation and Regional Differences in Carbon Emissions Efficiency of Cultural and Related Manufacturing Industries in China’s Yangtze River Basin," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    51. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    52. Minda Ma & Ran Yan & Weiguang Cai, 2017. "An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000–2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 741-756, November.
    53. Jianfeng Guo & Bin Su & Guang Yang & Lianyong Feng & Yinpeng Liu & Fu Gu, 2018. "How Do Verified Emissions Announcements Affect the Comoves between Trading Behaviors and Carbon Prices? Evidence from EU ETS," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    54. Paulo M. De Oliveira-De Jesus & John J. Galvis & Daniela Rojas-Lozano & Jose M. Yusta, 2020. "Multitemporal LMDI Index Decomposition Analysis to Explain the Changes of ACI by the Power Sector in Latin America and the Caribbean between 1990–2017," Energies, MDPI, vol. 13(9), pages 1-14, May.
    55. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    56. Raymand, Farhang & Ahmadi, Pouria & Mashayekhi, Sina, 2021. "Evaluating a light duty vehicle fleet against climate change mitigation targets under different scenarios up to 2050 on a national level," Energy Policy, Elsevier, vol. 149(C).
    57. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    58. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.
    59. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib @ Abdul Mutalib, 2022. "Light-Emitting Diode (LED) versus High-Pressure Sodium Vapour (HPSV) Efficiency: A Data Envelopment Analysis Approach with Undesirable Output," Energies, MDPI, vol. 15(13), pages 1-21, June.
    60. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
    61. Kuosmanen, Natalia & Maczulskij, Terhi, 2023. "The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing," IZA Discussion Papers 15865, Institute of Labor Economics (IZA).
    62. Astudillo, Miguel F. & Vaillancourt, Kathleen & Pineau, Pierre-Olivier & Amor, Ben, 2017. "Can the household sector reduce global warming mitigation costs? sensitivity to key parameters in a TIMES techno-economic energy model," Applied Energy, Elsevier, vol. 205(C), pages 486-498.
    63. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
    64. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
    65. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    66. Sri Indah Nikensari & Ega Nurdiyanto & Wong Sing Yun & Siti Fatimah Zahra, 2024. "Sustainable Exports to the European Union from ASEAN Countries: Is There an Impact of Low Carbon Economy?," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 616-623, July.
    67. Kircher, Kevin J. & Zhang, K. Max, 2021. "Heat purchase agreements could lower barriers to heat pump adoption," Applied Energy, Elsevier, vol. 286(C).
    68. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    69. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    70. Meiri Triani & Handrea Bernando Tambunan & Kania Dewi & Addina Shafiyya Ediansjah, 2023. "Review on Greenhouse Gases Emission in the Association of Southeast Asian Nations (ASEAN) Countries," Energies, MDPI, vol. 16(9), pages 1-17, May.
    71. Jiang, Suqin & Chen, Zun & Shan, Li & Chen, Xinyu & Wang, Haikun, 2017. "Committed CO2 emissions of China's coal-fired power generators from 1993 to 2013," Energy Policy, Elsevier, vol. 104(C), pages 295-302.
    72. Xin-Cheng Meng & Yeon-Ho Seong & Min-Kyu Lee, 2021. "Research Characteristics and Development Trend of Global Low-Carbon Power—Based on Bibliometric Analysis of 1983–2021," Energies, MDPI, vol. 14(16), pages 1-20, August.
    73. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    74. Mattia Dallapiccola & Grazia Barchi & Jennifer Adami & David Moser, 2021. "The Role of Flexibility in Photovoltaic and Battery Optimal Sizing towards a Decarbonized Residential Sector," Energies, MDPI, vol. 14(8), pages 1-18, April.
    75. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    76. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    77. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    78. Qin, Quande & Liu, Yuan & Huang, Jia-Ping, 2020. "A cooperative game analysis for the allocation of carbon emissions reduction responsibility in China's power industry," Energy Economics, Elsevier, vol. 92(C).
    79. Zhou, Zhanhang & Zeng, Chen & Li, Keke & Yang, Yuemin & Zhao, Kuokuo & Wang, Zhen, 2024. "Decomposition of the decoupling between electricity CO2 emissions and economic growth: A production and consumption perspective," Energy, Elsevier, vol. 293(C).
    80. Bello, S. & Onolemhemhen, R., 2024. "Does carbon pricing policy influence carbon emission intensity? New Evidence from Canadian Provinces," Cambridge Working Papers in Economics 2445, Faculty of Economics, University of Cambridge.
    81. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    82. Zhang, Guo-Xing & Yang, Yang & Su, Bin & Nie, Yan & Duan, Hong-Bo, 2023. "Electricity production, power generation structure, and air pollution: A monthly data analysis for 279 cities in China (2015–2019)," Energy Economics, Elsevier, vol. 120(C).
    83. Goh, Tian & Ang, B.W. & Su, Bin & Wang, H., 2018. "Drivers of stagnating global carbon intensity of electricity and the way forward," Energy Policy, Elsevier, vol. 113(C), pages 149-156.
    84. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    85. Sahin, Habip & Esen, Hikmet, 2022. "The usage of renewable energy sources and its effects on GHG emission intensity of electricity generation in Turkey," Renewable Energy, Elsevier, vol. 192(C), pages 859-869.
    86. Sou, Weng Sut & Goh, Tian & Lee, Xin Ni & Ng, Szu Hui & Chai, Kah-Hin, 2022. "Reducing the carbon intensity of international shipping – The impact of energy efficiency measures," Energy Policy, Elsevier, vol. 170(C).
    87. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    88. Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).
    89. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    90. Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    91. Gengxia Yang & Liang Jia, 2022. "Estimation of Carbon Emissions from Tourism Transport and Analysis of Its Influencing Factors in Dunhuang," Sustainability, MDPI, vol. 14(21), pages 1-11, November.
    92. Zhong-Hua Tian & Ze-Liang Yang, 2016. "Scenarios of Carbon Emissions from the Power Sector in Guangdong Province," Sustainability, MDPI, vol. 8(9), pages 1-14, August.
    93. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    94. Hui Jin, 2021. "Prediction of direct carbon emissions of Chinese provinces using artificial neural networks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    95. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    96. Bouznit, Mohammed & Pablo-Romero, María del P., 2016. "CO2 emission and economic growth in Algeria," Energy Policy, Elsevier, vol. 96(C), pages 93-104.
    97. Mohyla, Marek & Hrubesova, Eva & Martinkauppi, Birgitta & Mäkiranta, Anne & Tuomi, Ville, 2024. "Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland," Renewable Energy, Elsevier, vol. 221(C).
    98. Sæther, Simen Rostad, 2021. "Climate policy choices: An empirical study of the effects on the OECD and BRICS power sector emission intensity," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 499-515.
    99. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    100. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    101. Huang, Caihong & Zhang, Xiaoqing & Liu, Kai, 2021. "Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    102. Muhammad Raza & Ali Saleh Alshebami & Amena Sibghatullah, 2020. "Factors Influencing Renewable Energy Technological Innovation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 573-579.
    103. Xiaocun Zhang & Qiwen Zhu & Xueqi Zhang, 2023. "Carbon Emission Intensity of Final Electricity Consumption: Assessment and Decomposition of Regional Power Grids in China from 2005 to 2020," Sustainability, MDPI, vol. 15(13), pages 1-19, June.
    104. Shimei Weng & Jianbao Chen, 2023. "How Does Industrial Upgrading Affect Carbon Productivity in China’s Service Industry?," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    105. Veselov, Fedor & Pankrushina, Tatiana & Khorshev, Andrey, 2021. "Comparative economic analysis of technological priorities for low-carbon transformation of electric power industry in Russia and the EU," Energy Policy, Elsevier, vol. 156(C).
    106. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    107. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    108. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    109. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    110. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    111. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    112. Wei Shi & Zhiquan Sha & Fuwei Qiao & Wenwen Tang & Chuyu Luo & Yali Zheng & Chunli Wang & Jun Ge, 2023. "Study on the Temporal and Spatial Evolution of China’s Carbon Dioxide Emissions and Its Emission Reduction Path," Energies, MDPI, vol. 16(2), pages 1-16, January.
    113. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    114. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    115. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    116. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    117. Xingpeng Chen & Guokui Wang & Xiaojia Guo & Jinxiu Fu, 2016. "An Analysis Based on SD Model for Energy-Related CO 2 Mitigation in the Chinese Household Sector," Energies, MDPI, vol. 9(12), pages 1-18, December.
    118. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    119. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    120. Yangxueyi Hu & Abeer Hassan & Sehrish Atif, 2024. "Examining the Interplay between CEPSA’s ESG Performance and Financial Performance: An Overview of the Energy Sector Transformation," Sustainability, MDPI, vol. 16(7), pages 1-28, March.
    121. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    122. Yebing Fang & Limao Wang & Zhoupeng Ren & Yan Yang & Chufu Mou & Qiushi Qu, 2017. "Spatial Heterogeneity of Energy-Related CO 2 Emission Growth Rates around the World and Their Determinants during 1990–2014," Energies, MDPI, vol. 10(3), pages 1-17, March.
    123. Jiaxin Luo & Huiling Wang & Yue Ling & Mengtian Zhang, 2024. "Study of the impact of industrial restructuring on the intensity of greenhouse gas emissions: empirical data from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 25485-25502, October.
    124. Doan, Bao & Vo, Duc Hong & Pham, Huy, 2023. "The net economic benefits of power plants: International evidence," Energy Policy, Elsevier, vol. 175(C).
    125. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    126. Rong Guo & Xiaochen Wu & Tong Wu & Chao Dai, 2023. "Spatial–Temporal Pattern Characteristics and Impact Factors of Carbon Emissions in Production–Living–Ecological Spaces in Heilongjiang Province, China," Land, MDPI, vol. 12(6), pages 1-19, May.
    127. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    128. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    129. Goh, Tian & Ang, B.W., 2018. "Quantifying CO2 emission reductions from renewables and nuclear energy – Some paradoxes," Energy Policy, Elsevier, vol. 113(C), pages 651-662.
    130. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    131. Rodrigues, João F.D. & Wang, Juan & Behrens, Paul & de Boer, Paul, 2020. "Drivers of CO2 emissions from electricity generation in the European Union 2000–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

  87. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.

    Cited by:

    1. Jiang, Rui & Wu, Peng & Song, Yongze & Wu, Chengke & Wang, Peng & Zhong, Yun, 2022. "Factors influencing the adoption of renewable energy in the U.S. residential sector: An optimal parameters-based geographical detector approach," Renewable Energy, Elsevier, vol. 201(P1), pages 450-461.
    2. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    3. Wang, Shubin & Sun, Shaolong & Zhao, Erlong & Wang, Shouyang, 2021. "Urban and rural differences with regional assessment of household energy consumption in China," Energy, Elsevier, vol. 232(C).
    4. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    5. Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
    6. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    8. Chen, Jiandong & Xu, Chong & Song, Malin & Deng, Xiangzheng & Shen, Zhiyang, 2022. "Towards sustainable development: Distribution effect of carbon-food nexus in Chinese cities," Applied Energy, Elsevier, vol. 309(C).
    9. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    10. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    11. Huang, Chenchen & Lin, Boqiang, 2023. "Promoting decarbonization in the power sector: How important is digital transformation?," Energy Policy, Elsevier, vol. 182(C).
    12. Chao Bao & Ruowen Liu, 2019. "Electricity Consumption Changes across China’s Provinces Using A Spatial Shift-Share Decomposition Model," Sustainability, MDPI, vol. 11(9), pages 1-15, April.
    13. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    14. Wei Fan & Chunxia Zhu & Lijun Fu & Charbel Jose Chiappetta Jabbour & Zhiyang Shen & Malin Song, 2024. "Role of land use in China’s urban energy consumption: based on a deep clustering network and decomposition analysis," Annals of Operations Research, Springer, vol. 339(1), pages 835-859, August.
    15. Fu, Yelin & Lai, Kin Keung & Yu, Lean, 2021. "Multi-nation comparisons of energy architecture performance: A group decision-making method with preference structure and acceptability analysis," Energy Economics, Elsevier, vol. 96(C).
    16. Bolin Yu & Debin Fang & Andrew N. Kleit & Kun Xiao, 2022. "Exploring the driving mechanism and the evolution of the low‐carbon economy transition: Lessons from OECD developed countries," The World Economy, Wiley Blackwell, vol. 45(9), pages 2766-2795, September.
    17. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    18. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    19. Wu, Feng & Huang, Ningyu & Zhang, Qian & Qiao, Zhi & Zhan, Ni-ni, 2020. "Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach," Energy, Elsevier, vol. 190(C).
    20. Shumin Zhang & Yongze Lv & Jian Xu & Baolei Zhang, 2023. "Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    21. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
    22. Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
    23. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    24. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    25. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    26. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    27. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    28. Wang, Zhan & Deng, Xiangzheng, 2017. "The energy policy outlets for community acceptance of ecological investment in China," Energy Policy, Elsevier, vol. 107(C), pages 669-677.
    29. Dhani Setyawan & Rakhmin Dyarto & Hadi Setiawan & Rita Helbra Tenrini & Sofia Arie Damayanty, 2020. "Examining the Driving Forces Affecting Energy Intensity during Financial Crisis: Evidence from ASEAN-6 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 71-81.
    30. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    31. Xiaolei Liu & Heng Chen & Cheng Peng & Mingqiu Li, 2022. "Assessing the Drivers of Carbon Intensity Change in China: A Dynamic Spatial–Temporal Production-Theoretical Decomposition Analysis Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    32. Fu, Yelin & Lu, Yihe & Yu, Chen & Lai, Kin Keung, 2022. "Inter-country comparisons of energy system performance with the energy trilemma index: An ensemble ranking methodology based on the half-quadratic theory," Energy, Elsevier, vol. 261(PA).
    33. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    34. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    35. Huang, Caihong & Zhang, Xiaoqing & Liu, Kai, 2021. "Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    36. Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
    37. Román-Collado, Rocío & Cansino, José M. & Colinet, María J. & Dugo, Víctor, 2020. "A tool proposal to detect operating anomalies in the Spanish wholesale electricity market," Energy Policy, Elsevier, vol. 142(C).
    38. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    39. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
    40. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    41. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
    42. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    43. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    44. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    45. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    46. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    47. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    48. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    49. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.

  88. Ju, Keyi & Su, Bin & Zhou, Dequn & Zhou, P. & Zhang, Yuqiang, 2015. "Oil price crisis response: Capability assessment and key indicator identification," Energy, Elsevier, vol. 93(P2), pages 1353-1360.

    Cited by:

    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Hosseini, Keyvan & Stefaniec, Agnieszka, 2019. "Efficiency assessment of Iran's petroleum refining industry in the presence of unprofitable output: A dynamic two-stage slacks-based measure," Energy, Elsevier, vol. 189(C).
    3. Tao Zhai & Jiabin Liu & Daqing Wang, 2023. "Optimization path of agricultural products marketing channel based on innovative industrial chain," Economic Change and Restructuring, Springer, vol. 56(6), pages 3949-3977, December.
    4. Alsamara, Mouyad Kassm & Mrabet, Zouhair & Elafif, Mohamed & Gangopadhyay, Partha, 2017. "The asymmetric effects of oil price on economic growth in Turkey and Saudi Arabia: new evidence from nonlinear ARDL approach," International Journal of Development and Conflict, Gokhale Institute of Politics and Economics, vol. 7(2), pages 97-118.
    5. Chen, Wei & Zou, Wandan & Zhong, Kaiyang & Aliyeva, Alina, 2023. "Machine learning assessment under the development of green technology innovation: A perspective of energy transition," Renewable Energy, Elsevier, vol. 214(C), pages 65-73.
    6. Wang, Lin & Dilanchiev, Azer & Haseeb, Mohammad, 2022. "The environmental regulation and policy assessment effect on the road to green recovery transformation," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 914-929.
    7. Yu, Yiling, 2023. "Role of Natural resources rent on economic growth: Fresh empirical insight from selected developing economies," Resources Policy, Elsevier, vol. 81(C).
    8. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin & Liu, Lifan, 2016. "Macroeconomic performance of oil price shocks: Outlier evidence from nineteen major oil-related countries/regions," Energy Economics, Elsevier, vol. 60(C), pages 325-332.

  89. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2015. "Energy import resilience with input–output linear programming models," Energy Economics, Elsevier, vol. 50(C), pages 215-226.

    Cited by:

    1. Ionescu, Romeo-Victor & Zlati, Monica Laura & Antohi, Valentin Marian, 2021. "European union's regions between cohesion and sustainability," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    2. Kharrazi, Ali & Sato, Masahiro & Yarime, Masaru & Nakayama, Hirofumi & Yu, Yadong & Kraines, Steven, 2015. "Examining the resilience of national energy systems: Measurements of diversity in production-based and consumption-based electricity in the globalization of trade networks," Energy Policy, Elsevier, vol. 87(C), pages 455-464.
    3. Kang, Jidong & Ng, Tsan Sheng & Su, Bin & Milovanoff, Alexandre, 2021. "Electrifying light-duty passenger transport for CO2 emissions reduction: A stochastic-robust input–output linear programming model," Energy Economics, Elsevier, vol. 104(C).
    4. Kang, Jidong & Ng, Tsan Sheng & Su, Bin, 2020. "Optimizing electricity mix for CO2 emissions reduction: A robust input-output linear programming model," European Journal of Operational Research, Elsevier, vol. 287(1), pages 280-292.
    5. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    6. Faure, Corinne & Guetlein, Marie-Charlotte & Schleich, Joachim & Tu, Gengyang & Whitmarsh, Lorraine & Whittle, Colin, 2022. "Household acceptability of energy efficiency policies in the European Union: Policy characteristics trade-offs and the role of trust in government and environmental identity," Ecological Economics, Elsevier, vol. 192(C).
    7. Kong, Zhaoyang & Lu, Xi & Jiang, Qingzhe & Dong, Xiucheng & Liu, Guixian & Elbot, Noah & Zhang, Zhonghua & Chen, Shi, 2019. "Assessment of import risks for natural gas and its implication for optimal importing strategies: A case study of China," Energy Policy, Elsevier, vol. 127(C), pages 11-18.
    8. Frauke Wiese, 2016. "Resilience Thinking as an Interdisciplinary Guiding Principle for Energy System Transitions," Resources, MDPI, vol. 5(4), pages 1-17, September.
    9. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.
    10. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    11. Mehmet Alagöz & Nihal Yokuş & Turgut Yokuş, 2019. "Photovoltaic solar power plant investment optimization model for economic external balance: Model of Turkey," Energy & Environment, , vol. 30(3), pages 522-541, May.
    12. Wang, Jun-Zhuo & Feng, Gen-Fu & Yin, Hua-Tang & Chang, Chun-Ping, 2023. "Toward sustainable development: Does the rising oil price stimulate innovation in climate change mitigation technologies?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 569-583.
    13. Jiang, Meihui & An, Haizhong & Gao, Xiangyun & Liu, Donghui & Jia, Nanfei & Xi, Xian, 2020. "Consumption-based multi-objective optimization model for minimizing energy consumption: A case study of China," Energy, Elsevier, vol. 208(C).
    14. Paolo Manasse & G. Alfredo Minerva & Roberto Patuelli & Lorenzo Zirulia, 2020. "How to Lockdown an Economy: an Input Output Analysis of the Italian Case," Working Papers wp1152, Dipartimento Scienze Economiche, Universita' di Bologna.
    15. M Sarwar Sindhu & Tabasam Rashid & Agha Kashif, 2019. "Modeling of linear programming and extended TOPSIS in decision making problem under the framework of picture fuzzy sets," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-13, August.
    16. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    17. Gatto, Andrea & Drago, Carlo, 2020. "Measuring and modeling energy resilience," Ecological Economics, Elsevier, vol. 172(C).

  90. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.

    Cited by:

    1. Liu, Yang & Zhong, Sheng, 2021. "Cross-Economy Dynamics in Energy Productivity: Evidence from 47 Economies over the Period 2000–2015," ADBI Working Papers 1215, Asian Development Bank Institute.
    2. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    3. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    4. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    5. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    6. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    7. Atalla, Tarek & Bean, Patrick, 2017. "Determinants of energy productivity in 39 countries: An empirical investigation," Energy Economics, Elsevier, vol. 62(C), pages 217-229.
    8. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    9. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    10. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
    11. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    12. Laporte, Juan P. & Román-Collado, Rocío & Cansino, José M., 2024. "Key driving forces of energy consumption in a higher education institution using the LMDI approach: The case of the Universidad Autónoma de Chile," Applied Energy, Elsevier, vol. 372(C).
    13. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    14. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    15. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    16. Yu, Miao & Zhao, Xintong & Gao, Yuning, 2019. "Factor decomposition of China’s industrial electricity consumption using structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 67-76.
    17. Li, Bo & Han, Yukai & Wang, Chensheng & Sun, Wei, 2022. "Did civilized city policy improve energy efficiency of resource-based cities? Prefecture-level evidence from China," Energy Policy, Elsevier, vol. 167(C).
    18. Wen, Yuyuan & Yu, Zilong & Xue, Jingjing & Liu, Yang, 2024. "How heterogeneous industrial agglomeration impacts energy efficiency subject to technological innovation:Evidence from the spatial threshold model," Energy Economics, Elsevier, vol. 136(C).
    19. Marion Leroutier & Philippe Quirion, 2022. "Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris," Post-Print hal-03921086, HAL.
    20. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    21. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    22. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    23. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    24. Shang, Yizi & Lu, Shibao & Shang, Ling & Li, Xiaofei & Shi, Hongwang & Li, Wei, 2017. "Decomposition of industrial water use from 2003 to 2012 in Tianjin, China," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 53-61.
    25. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    26. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    27. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    28. Chen, Zhenni & Zhang, Zengkai & Feng, Tong & Liu, Diyi, 2023. "What drives the temporal dynamics and spatial differences of urban and rural household emissions in China?," Energy Economics, Elsevier, vol. 125(C).
    29. Yu, Yinyun & Li, Congdong & Fu, Yelin & Yang, Weiming, 2023. "A group decision-making method to measure national energy architecture performance: A case study of the International energy Agency," Applied Energy, Elsevier, vol. 330(PA).
    30. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    31. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    32. Fu, Yelin & Lai, Kin Keung & Yu, Lean, 2021. "Multi-nation comparisons of energy architecture performance: A group decision-making method with preference structure and acceptability analysis," Energy Economics, Elsevier, vol. 96(C).
    33. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    34. Oh, Dong-hyun, 2015. "Productivity growth, technical change and economies of scale of Korean fossil-fuel generation companies, 2001–2012: A dual approach," Energy Economics, Elsevier, vol. 49(C), pages 113-121.
    35. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    36. Arsen Tleppayev * & Saule Zeinolla & Saltanat Abishova, 2018. "Kazakhstan's Energy Efficiency Policy Via Dea Approaches," The Journal of Social Sciences Research, Academic Research Publishing Group, vol. 4(12), pages 509-514, 12-2018.
    37. Wang, Yang & Liu, Yongzhang & Huang, Liqiao & Zhang, Qingyu & Gao, Wei & Sun, Qian & Li, Xi, 2022. "Decomposition the driving force of regional electricity consumption in Japan from 2001 to 2015," Applied Energy, Elsevier, vol. 308(C).
    38. Marion Leroutier & Philippe Quirion, 2021. "Tackling Transport-Induced Pollution in Cities: A case Study in Paris," Working Papers 2021.07, FAERE - French Association of Environmental and Resource Economists.
    39. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    40. Xu, Chong & Qin, Zengqiang & Chen, Jiandong & Zhang, Jiangxue, 2024. "Heterogeneous technology-induced global CO2 emission reduction and emission forecasting since the Kyoto era," Applied Energy, Elsevier, vol. 371(C).
    41. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    42. Wu, Feng & Huang, Ningyu & Zhang, Qian & Qiao, Zhi & Zhan, Ni-ni, 2020. "Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach," Energy, Elsevier, vol. 190(C).
    43. Shumin Zhang & Yongze Lv & Jian Xu & Baolei Zhang, 2023. "Exploring the Spatiotemporal Heterogeneity of Carbon Emission from Energy Consumption and Its Influencing Factors in the Yellow River Basin," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    44. Shiping Ma & Qianqian Liu & Wenzhong Zhang, 2022. "Examining the Effects of Installed Capacity Mix and Capacity Factor on Aggregate Carbon Intensity for Electricity Generation in China," IJERPH, MDPI, vol. 19(6), pages 1-17, March.
    45. Li, Jin & Hu, Shanying, 2017. "History and future of the coal and coal chemical industry in China," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 13-24.
    46. Li, Yonglin & Zuo, Zhili & Cheng, Yue & Cheng, Jinhua & Xu, Deyi, 2023. "Towards a decoupling between regional economic growth and CO2 emissions in China's mining industry: A comprehensive decomposition framework," Resources Policy, Elsevier, vol. 80(C).
    47. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    48. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    49. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
    50. Carlino, Laurent & Coppens, François & González, Javier & Ortega, Manuel & Pérez-Duarte, Sébastien & Rubbrecht, Ilse & Vennix, Saskia, 2017. "Decomposition techniques for financial ratios of European non-financial listed groups," Statistics Paper Series 21, European Central Bank.
    51. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    52. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    53. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    54. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    55. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    56. Wei, Wei & Hu, Haiqing & Chang, Chun-Ping, 2022. "Why the same degree of economic policy uncertainty can produce different outcomes in energy efficiency? New evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 467-481.
    57. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    58. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    59. Geng, Zhiqiang & Zeng, Rongfu & Han, Yongming & Zhong, Yanhua & Fu, Hua, 2019. "Energy efficiency evaluation and energy saving based on DEA integrated affinity propagation clustering: Case study of complex petrochemical industries," Energy, Elsevier, vol. 179(C), pages 863-875.
    60. Xiong, Yongqing & Cheng, Qian, 2023. "Effects of new energy vehicle adoption on provincial energy efficiency in China: From the perspective of regional imbalances," Energy, Elsevier, vol. 281(C).
    61. Junghwan Lee & Jinsoo Kim, 2021. "A Decomposition Analysis of the Korean Manufacturing Sector: Monetary vs. Physical Outputs," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    62. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    63. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    64. Xiaolei Liu & Heng Chen & Cheng Peng & Mingqiu Li, 2022. "Assessing the Drivers of Carbon Intensity Change in China: A Dynamic Spatial–Temporal Production-Theoretical Decomposition Analysis Approach," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    65. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    66. Fu, Yelin & Lu, Yihe & Yu, Chen & Lai, Kin Keung, 2022. "Inter-country comparisons of energy system performance with the energy trilemma index: An ensemble ranking methodology based on the half-quadratic theory," Energy, Elsevier, vol. 261(PA).
    67. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    68. Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
    69. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    70. Román-Collado, Rocío & Cansino, José M. & Colinet, María J. & Dugo, Víctor, 2020. "A tool proposal to detect operating anomalies in the Spanish wholesale electricity market," Energy Policy, Elsevier, vol. 142(C).
    71. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    72. Wang, Jiqiang & Wang, Ya & Zhang, Shaohui & Fan, Chun & Zhou, Nanqing & Liu, Jinhui & Li, Xin & Liu, Yun & Hou, Xiujun & Yi, Bowen, 2024. "Accounting of aviation carbon emission in developing countries based on flight-level ADS-B data," Applied Energy, Elsevier, vol. 358(C).
    73. P. Zhou & F. Wu & D. Q. Zhou, 2017. "Total-factor energy efficiency with congestion," Annals of Operations Research, Springer, vol. 255(1), pages 241-256, August.
    74. Shiqing Zhang & Yaping Li & Zheng Liu & Xiaofei Kou & Wenlong Zheng, 2023. "Towards a Decoupling between Economic Expansion and Carbon Dioxide Emissions of the Transport Sector in the Yellow River Basin," Sustainability, MDPI, vol. 15(5), pages 1-26, February.
    75. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    76. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    77. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    78. Wang, H. & Zhou, P., 2018. "Multi-country comparisons of CO2 emission intensity: The production-theoretical decomposition analysis approach," Energy Economics, Elsevier, vol. 74(C), pages 310-320.
    79. Jie Yang & Xiaohong Chen, 2019. "Quantification of the Driving Factors of Water Use in the Productive Sector Change Using Various Decomposition Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4105-4121, September.
    80. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    81. Heun, Matthew Kuperus & Owen, Anne & Brockway, Paul E., 2018. "A physical supply-use table framework for energy analysis on the energy conversion chain," Applied Energy, Elsevier, vol. 226(C), pages 1134-1162.
    82. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    83. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    84. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    85. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    86. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    87. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    88. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.
    89. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    90. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    91. Di Zhang & Zhanqi Wang & Shicheng Li & Hongwei Zhang, 2021. "Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 18(4), pages 1-20, February.

  91. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.

    Cited by:

    1. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    2. Yu, Yanni & Wu, Wenjie & Zhang, Tao & Liu, Yanchu, 2016. "Environmental catching-up, eco-innovation, and technological leadership in China's pilot ecological civilization zones," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 228-236.
    3. Feihua Huang & Yue Du & Debao Hu & Bin Zhang, 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    4. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
    5. Ting Yue & Ruyin Long & Junli Liu & Haiwen Liu & Hong Chen, 2019. "Empirical Study on Households’ Energy-Conservation Behavior of Jiangsu Province in China: The Role of Policies and Behavior Results," IJERPH, MDPI, vol. 16(6), pages 1-16, March.
    6. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    7. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    8. Lei Wang & Wei Li & Guomin Li & Guozhen Zhang, 2021. "Concept Evolution and Multi-Dimensional Measurement Comparison of Urban Energy Performance from the Perspective of System Correlation: Empirical Analysis of 142 Prefecture Level Cities in China," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    9. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    10. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    11. Xiaoling Wang & Feng He & Linfeng Zhang & Lili Chen, 2018. "Energy Efficiency of China’s Iron and Steel Industry from the Perspective of Technology Heterogeneity," Energies, MDPI, vol. 11(5), pages 1-11, May.
    12. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    13. Lu Liu & Yuxin Meng & Desheng Wu & Qiying Ran & Jianhong Cao & Zilian Liu, 2023. "Impact of haze pollution and human capital on economic resilience: evidence from prefecture-level cities in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 13429-13449, November.
    14. Zhang, Yue-Jun & Peng, Hua-Rong & Liu, Zhao & Tan, Weiping, 2015. "Direct energy rebound effect for road passenger transport in China: A dynamic panel quantile regression approach," Energy Policy, Elsevier, vol. 87(C), pages 303-313.
    15. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    16. Bostian, Moriah & Färe, Rolf & Grosskopf, Shawna & Lundgren, Tommy, 2016. "Environmental investment and firm performance: A network approach," Energy Economics, Elsevier, vol. 57(C), pages 243-255.
    17. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    18. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    19. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    20. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    21. Jinkai Li & Jingjing Ma & Wei Wei, 2020. "Analysis and Evaluation of the Regional Characteristics of Carbon Emission Efficiency for China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    22. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    23. Feng, Chao & Wang, Miao, 2017. "The economy-wide energy efficiency in China’s regional building industry," Energy, Elsevier, vol. 141(C), pages 1869-1879.
    24. Jun Yang & Xin Feng & Yufei Tang & Jun Yan & Haibo He & Chao Luo, 2015. "A Power System Optimal Dispatch Strategy Considering the Flow of Carbon Emissions and Large Consumers," Energies, MDPI, vol. 8(9), pages 1-20, August.
    25. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    26. Haitao Wu & Mengzhe Sun & Wenjia Zhang & Yunxia Guo & Muhammad Irfan & Mingyue Lu & Yu Hao, 2024. "Can urbanization move ahead with energy conservation and emission reduction? New evidence from China," Energy & Environment, , vol. 35(3), pages 1288-1314, May.
    27. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    28. Cheng, Xiu & Long, Ruyin & Chen, Hong, 2020. "A policy utility dislocation model based on prospect theory: A case study of promoting policies with low-carbon lifestyle," Energy Policy, Elsevier, vol. 137(C).
    29. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    30. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    31. Jichao Geng & Ruyin Long & Hong Chen & Ting Yue & Wenbo Li & Qianwen Li, 2017. "Exploring Multiple Motivations on Urban Residents’ Travel Mode Choices: An Empirical Study from Jiangsu Province in China," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    32. Wei, Kai & Lin, Boqiang, 2024. "Spatial evolution of global household clean cooking energy transition: Convergent clubs and drivers," Applied Energy, Elsevier, vol. 372(C).
    33. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    34. Ke-Liang Wang & Shuang He & Fu-Qin Zhang, 2021. "Relationship between FDI, fiscal expenditure and green total-factor productivity in China: From the perspective of spatial spillover," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-28, April.
    35. Wang, Nannan & Chen, Ji & Yao, Shengnan & Chang, Yen-Chiang, 2018. "A meta-frontier DEA approach to efficiency comparison of carbon reduction technologies on project level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2606-2612.
    36. He Zhang & Jingyi Peng & Rui Wang & Yuanyuan Guo & Jing He & Dahlia Yu & Jianxun Zhang, 2023. "Efficiency and Potential Evaluation to Promote Differentiated Low-Carbon Management in Chinese Counties," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    37. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    38. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    39. Wei, Jia & Chen, Hong & Long, Ruyin, 2016. "Is ecological personality always consistent with low-carbon behavioral intention of urban residents?," Energy Policy, Elsevier, vol. 98(C), pages 343-352.
    40. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    41. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    42. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    43. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    44. Teng, Xiangyu & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "Measuring China’s energy efficiency by considering forest carbon sequestration and applying a meta dynamic non-radial directional distance function," Energy, Elsevier, vol. 263(PC).
    45. Wei, Jin & Ni, Yang & Zhang, Yue-Jun, 2020. "The mitigation strategies for bottom environment of service-oriented public building from a micro-scale perspective: A case study in China," Energy, Elsevier, vol. 205(C).
    46. Lijun Zeng & Laijun Zhao & Qin Wang & Bingcheng Wang & Yuan Ma & Wei Cui & Yujing Xie, 2018. "Modeling Interprovincial Cooperative Energy Saving in China: An Electricity Utilization Perspective," Energies, MDPI, vol. 11(1), pages 1-25, January.
    47. Cheng, Xiu & Long, Ruyin & Chen, Hong & Yang, Jiahui, 2019. "Does social interaction have an impact on residents’ sustainable lifestyle decisions? A multi-agent stimulation based on regret and game theory," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    48. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    49. Sun, Jiasen & Yuan, Yang & Yang, Rui & Ji, Xiang & Wu, Jie, 2017. "Performance evaluation of Chinese port enterprises under significant environmental concerns: An extended DEA-based analysis," Transport Policy, Elsevier, vol. 60(C), pages 75-86.
    50. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Lu, Longxi & He, Yu, 2017. "The effect of energy construction adjustment on the dynamical evolution of energy-saving and emission-reduction system in China," Applied Energy, Elsevier, vol. 196(C), pages 180-189.
    51. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Allocation of emission permits for China’s power plants: A systemic Pareto optimal method," Applied Energy, Elsevier, vol. 204(C), pages 607-619.
    52. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    53. Wei, Jia & Chen, Hong & Cui, Xiaotong & Long, Ruyin, 2016. "Carbon capability of urban residents and its structure: Evidence from a survey of Jiangsu Province in China," Applied Energy, Elsevier, vol. 173(C), pages 635-649.
    54. Luping Zhang & Yingying Zhu & Liwei Fan, 2021. "Temporal-Spatial Structure and Influencing Factors of Urban Energy Efficiency in China’s Agglomeration Areas," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    55. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    56. Hao Xiao & Shuquan Li & Julien Chevallier & Bangzhu Zhu, 2017. "Electricity-Savings Pressure and Electricity-Savings Potential among China?s Inter-Provincial Manufacturing Sectors," Working Papers 2017-006, Department of Research, Ipag Business School.
    57. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    58. Jiasen Sun & Guo Li, 2022. "Optimizing emission reduction task sharing: technology and performance perspectives," Annals of Operations Research, Springer, vol. 316(1), pages 581-602, September.
    59. Du, Zhili & Wang, Yao, 2022. "Does energy-saving and emission reduction policy affects carbon reduction performance? A quasi-experimental evidence in China," Applied Energy, Elsevier, vol. 324(C).
    60. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    61. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
    62. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    63. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    64. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    65. Kalina Grzesiuk & Dorota Jegorow & Monika Wawer & Anna Głowacz, 2023. "Energy-Efficient City Transportation Solutions in the Context of Energy-Conserving and Mobility Behaviours of Generation Z," Energies, MDPI, vol. 16(15), pages 1-28, August.
    66. Li-Ming Xue & Zhi-Xue Zheng & Shuo Meng & Mingjun Li & Huaqing Li & Ji-Ming Chen, 2022. "Carbon emission efficiency and spatio-temporal dynamic evolution of the cities in Beijing-Tianjin-Hebei Region, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7640-7664, June.
    67. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    68. Corrado Lo Storto, 2016. "Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method," Sustainability, MDPI, vol. 8(2), pages 1-29, January.
    69. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    70. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    71. Shabani, Mohadeseh & Kordrostami, Sohrab & Jahani Sayyad Noveiri, Monireh, 2023. "Renewable energy performance analysis using fuzzy dynamic directional distance function model under natural and managerial disposability," Applied Energy, Elsevier, vol. 352(C).
    72. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    73. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    74. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    75. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    76. Tan, Sieting & Yang, Jin & Yan, Jinyue & Lee, Chewtin & Hashim, Haslenda & Chen, Bin, 2017. "A holistic low carbon city indicator framework for sustainable development," Applied Energy, Elsevier, vol. 185(P2), pages 1919-1930.
    77. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    78. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    79. Sami Jarboui, 2022. "Operational and environmental efficiency of U.S. oil and gas companies towards energy transition policies: A comparative empirical analysis," Australian Economic Papers, Wiley Blackwell, vol. 61(2), pages 234-257, June.
    80. Feiyu Chen & Hong Chen & Xinru Huang & Ruyin Long & Hui Lu & Ting Yue, 2017. "Public Response to the Regulation Policy of Urban Household Waste: Evidence from a Survey of Jiangsu Province in China," Sustainability, MDPI, vol. 9(6), pages 1-23, June.
    81. Yue Xu & Zebin Wang & Yung-Ho Chiu & Fangrong Ren, 2020. "Research on energy-saving and emissions reduction efficiency in Chinese thermal power companies," Energy & Environment, , vol. 31(5), pages 903-919, August.
    82. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    83. Ma, Ruiyang & Lin, Boqiang, 2023. "Digitalization and energy-saving and emission reduction in Chinese cities: Synergy between industrialization and digitalization," Applied Energy, Elsevier, vol. 345(C).

  92. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.

    Cited by:

    1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    2. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2021. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Working Papers 2021-22, Faculty of Economics and Statistics, Universität Innsbruck.
    4. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    5. Zhang, Wei & You, Jianmin & Lin, Weiwen, 2021. "Internet plus and China industrial system's low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    7. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    8. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    9. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    10. Feng Dong & Ruyin Long & Zhuolin Li & Yuanju Dai, 2016. "Analysis of carbon emission intensity, urbanization and energy mix: evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1375-1391, June.
    11. Markandya, Anil & Arto, Iñaki & González-Eguino, Mikel & Román, Maria V., 2016. "Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union," Applied Energy, Elsevier, vol. 179(C), pages 1342-1350.
    12. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    13. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    14. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    15. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    16. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    17. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    18. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    19. Yongyou Nie & Yunhuan Gao & He He, 2022. "Modelling Structural Effect and Linkage on Carbon Emissions in China: An Environmentally Extended Semi-Closed Ghosh Input–Output Model," Energies, MDPI, vol. 15(17), pages 1-17, August.
    20. Wu, Ya & Zhu, Qianwen & Zhong, Ling & Zhang, Tao, 2019. "Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 349-360.
    21. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    22. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    23. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    24. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    25. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    26. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    27. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    28. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    29. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    30. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    31. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    32. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    33. Qianqian Guo & Zhifang Su & Chaoshin Chiao, 2022. "Carbon emissions trading policy, carbon finance, and carbon emissions reduction: evidence from a quasi-natural experiment in China," Economic Change and Restructuring, Springer, vol. 55(3), pages 1445-1480, August.
    34. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    35. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
    36. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    37. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    38. Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
    39. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    40. Shi, Qiaoling & Zhao, Yuhuan & Qian, Zhiling & Zheng, Lu & Wang, Song, 2022. "Global value chains participation and carbon emissions: Evidence from Belt and Road countries," Applied Energy, Elsevier, vol. 310(C).
    41. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
    42. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    43. Han Sun & Chao Huang & Shan Ni, 2022. "Driving factors of consumption-based PM2.5 emissions in China: an application of the generalized Divisia index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10209-10231, August.
    44. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    45. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    46. Peng Qi & Jianlei Lang & Xiaoqi Wang & Ying Zhou & Haoyun Qi & Shuiyuan Cheng, 2024. "The Coordinated Effects of CO 2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    47. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    48. Wang, Saige & Chen, Bin, 2018. "Three-Tier carbon accounting model for cities," Applied Energy, Elsevier, vol. 229(C), pages 163-175.
    49. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    50. H. Wang & Chen Pan & P. Zhou, 2019. "Assessing the Role of Domestic Value Chains in China’s CO2 Emission Intensity: A Multi-Region Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 865-890, October.
    51. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    52. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    53. Jingcheng Li & Menggang Li, 2022. "Research of Carbon Emission Reduction Potentials in the Yellow River Basin, Based on Cluster Analysis and the Logarithmic Mean Divisia Index (LMDI) Method," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    54. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    55. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    56. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    57. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    58. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    59. Liu, Lirong & Huang, Gordon & Baetz, Brian & Cheng, Guanhui & Pittendrigh, Scott M. & Pan, Siyue, 2020. "Input-output modeling analysis with a detailed disaggregation of energy sectors for climate change policy-making: A case study of Saskatchewan, Canada," Renewable Energy, Elsevier, vol. 151(C), pages 1307-1317.
    60. Zafrilla, Jorge-Enrique & Arce, Guadalupe & Cadarso, María-Ángeles & Córcoles, Carmen & Gómez, Nuria & López, Luis-Antonio & Monsalve, Fabio & Tobarra, María-Ángeles, 2019. "Triple bottom line analysis of the Spanish solar photovoltaic sector: A footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    61. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    62. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    63. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    64. Jincai Zhao & Qianqian Liu, 2021. "Examining the Driving Factors of Urban Residential Carbon Intensity Using the LMDI Method: Evidence from China’s County-Level Cities," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
    65. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    66. Liu, Lirong & Huang, Guohe & Baetz, Brian & Guan, Yuru & Zhang, Kaiqiang, 2020. "Multi-Dimensional Hypothetical Fuzzy Risk Simulation model for Greenhouse Gas mitigation policy development," Applied Energy, Elsevier, vol. 261(C).
    67. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    68. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    69. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    70. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    71. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    72. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    73. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    74. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    75. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    76. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    77. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    78. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    79. Xuemei Jia & Qing Liu & Jiahao Feng & Yuru Li & Lijun Zhang, 2023. "The Induced Effects of Carbon Emissions for China’s Industry Digital Transformation," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    80. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    81. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    82. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    83. Belaïd, Fateh & Massié, Camille, 2023. "The viability of energy efficiency in facilitating Saudi Arabia's journey toward net-zero emissions," Energy Economics, Elsevier, vol. 124(C).
    84. Mingjuan Ma & Shuifa Ke & Qiang Li & Yaqi Wu, 2023. "Towards Carbon Neutrality: A Comprehensive Analysis on Total Factor Carbon Productivity of the Yellow River Basin, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    85. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
    86. Fu, Xue & Lahr, Michael & Yaxiong, Zhang & Meng, Bo, 2017. "Actions on climate change, Intended Reducing carbon emissions in China via optimal industry shifts: Toward hi-tech industries, cleaner resources and higher carbon shares in less-develop regions," Energy Policy, Elsevier, vol. 102(C), pages 616-638.
    87. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    88. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    89. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    90. Guangming Rao & Bin Su & Jinlian Li & Yong Wang & Yanhua Zhou & Zhaolin Wang, 2019. "Carbon Sequestration Total Factor Productivity Growth and Decomposition: A Case of the Yangtze River Economic Belt of China," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    91. Huang, Junbing & Liu, Qiang & Cai, Xiaochen & Hao, Yu & Lei, Hongyan, 2018. "The effect of technological factors on China's carbon intensity: New evidence from a panel threshold model," Energy Policy, Elsevier, vol. 115(C), pages 32-42.
    92. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    93. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    94. Tian, Peng & Lin, Boqiang, 2017. "Promoting green productivity growth for China's industrial exports: Evidence from a hybrid input-output model," Energy Policy, Elsevier, vol. 111(C), pages 394-402.
    95. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    96. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    97. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    98. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    99. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    100. Wang, Juan & Li, Ziming & Wang, Yanan, 2024. "How does China's energy-consumption trading policy affect the carbon abatement costs? An analysis based on spatial difference-in-differences method," Energy, Elsevier, vol. 294(C).
    101. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    102. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    103. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    104. Feng Feng & Linlin Peng, 2019. "Is There Any Difference in the Effect of Different R and D Sources on Carbon Intensity in China?," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
    105. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    106. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    107. Guang, Fengtao & He, Yongxiu & Wen, Le & Sharp, Basil, 2019. "Energy intensity and its differences across China’s regions: Combining econometric and decomposition analysis," Energy, Elsevier, vol. 180(C), pages 989-1000.
    108. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    109. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    110. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    111. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    112. Shihong Zeng & Jiuying Chen, 2016. "Forecasting the Allocation Ratio of Carbon Emission Allowance Currency for 2020 and 2030 in China," Sustainability, MDPI, vol. 8(7), pages 1-28, July.
    113. Wanlin Yu & Jinlong Luo, 2022. "Impact on Carbon Intensity of Carbon Emission Trading—Evidence from a Pilot Program in 281 Cities in China," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    114. ORALHAN Burcu & ALTAY TOPCU Betül & SÜMERLİ SARIGÜL Sevgi, 2016. "Determination Of Key Sectors In Turkish Economy By Using Input-Output Analysis," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 68(1), pages 178-192, June.
    115. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    116. Thomakos, Dimitrios D. & Alexopoulos, Thomas A., 2016. "Carbon intensity as a proxy for environmental performance and the informational content of the EPI," Energy Policy, Elsevier, vol. 94(C), pages 179-190.

  93. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.

    Cited by:

    1. Zedong Yang & Hui Sun & Weipeng Yuan & Xuechao Xia, 2022. "The Spatial Pattern of the Prefecture-Level Carbon Emissions and Its Spatial Mismatch in China with the Level of Economic Development," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    2. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    3. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Nian, Victor & Jindal, Gautam & Li, Hailong, 2019. "A feasibility study on integrating large-scale battery energy storage systems with combined cycle power generation – Setting the bottom line," Energy, Elsevier, vol. 185(C), pages 396-408.
    5. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    6. Pomponi, Francesco & Hart, Jim, 2021. "The greenhouse gas emissions of nuclear energy – Life cycle assessment of a European pressurised reactor," Applied Energy, Elsevier, vol. 290(C).
    7. Yabo Wang & Victor Nian & Hailong Li & Jun Yuan, 2018. "Life Cycle Analysis of Integrated Gasification Combined Cycle Power Generation in the Context of Southeast Asia," Energies, MDPI, vol. 11(6), pages 1-18, June.
    8. Jian Li & Xiangnan Wang & Huamei Wang & Yuanfei Zhang & Cailin Zhang & Hongrui Xu & Bijun Wu, 2024. "Research on the Accounting and Prediction of Carbon Emission from Wave Energy Convertor Based on the Whole Lifecycle," Energies, MDPI, vol. 17(7), pages 1-15, March.
    9. Nian, Victor, 2015. "Change impact analysis on the life cycle carbon emissions of energy systems – The nuclear example," Applied Energy, Elsevier, vol. 143(C), pages 437-450.
    10. Ji, Ling & Liang, Sai & Qu, Shen & Zhang, Yanxia & Xu, Ming & Jia, Xiaoping & Jia, Yingtao & Niu, Dongxiao & Yuan, Jiahai & Hou, Yong & Wang, Haikun & Chiu, Anthony S.F. & Hu, Xiaojun, 2016. "Greenhouse gas emission factors of purchased electricity from interconnected grids," Applied Energy, Elsevier, vol. 184(C), pages 751-758.
    11. Wang, Like & Wang, Yuan & Du, Huibin & Zuo, Jian & Yi Man Li, Rita & Zhou, Zhihua & Bi, Fenfen & Garvlehn, McSimon P., 2019. "A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study," Applied Energy, Elsevier, vol. 249(C), pages 37-45.
    12. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    13. Nian, Victor & Mignacca, Benito & Locatelli, Giorgio, 2022. "Policies toward net-zero: Benchmarking the economic competitiveness of nuclear against wind and solar energy," Applied Energy, Elsevier, vol. 320(C).
    14. Nian, Victor & Chou, S.K., 2014. "The state of nuclear power two years after Fukushima – The ASEAN perspective," Applied Energy, Elsevier, vol. 136(C), pages 838-848.
    15. Nian, Victor, 2016. "Impacts of changing design considerations on the life cycle carbon emissions of solar photovoltaic systems," Applied Energy, Elsevier, vol. 183(C), pages 1471-1487.
    16. Wang, Zhen & Wei, Liyuan & Niu, Beibei & Liu, Yong & Bin, Guoshu, 2017. "Controlling embedded carbon emissions of sectors along the supply chains: A perspective of the power-of-pull approach," Applied Energy, Elsevier, vol. 206(C), pages 1544-1551.
    17. Wang, Yabo & Liu, Shengchun & Nian, Victor & Li, Xueqiang & Yuan, Jun, 2019. "Life cycle cost-benefit analysis of refrigerant replacement based on experience from a supermarket project," Energy, Elsevier, vol. 187(C).
    18. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    19. Nian, Victor, 2016. "Analysis of interconnecting energy systems over a synchronized life cycle," Applied Energy, Elsevier, vol. 165(C), pages 1024-1036.
    20. Yang-Kon Kim & Eul-Bum Lee, 2018. "Optimization Simulation, Using Steel Plant Off-Gas for Power Generation: A Life-Cycle Cost Analysis Approach," Energies, MDPI, vol. 11(11), pages 1-17, October.
    21. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Quantification of the Lifecycle Greenhouse Gas Emissions from Nuclear Power Generation Systems," Energies, MDPI, vol. 9(11), pages 1-13, October.
    22. Baek, Jungho, 2015. "A panel cointegration analysis of CO2 emissions, nuclear energy and income in major nuclear generating countries," Applied Energy, Elsevier, vol. 145(C), pages 133-138.
    23. Li, Yanjie & Nian, Victor & Li, Hailong & Liu, Shengchun & Wang, Yabo, 2021. "A life cycle analysis techno-economic assessment framework for evaluating future technology pathways – The residential air-conditioning example," Applied Energy, Elsevier, vol. 291(C).
    24. Gao, Cheng-kang & Na, Hong-ming & Song, Kai-hui & Dyer, Noel & Tian, Fan & Xu, Qing-jiang & Xing, Yu-hong, 2019. "Environmental impact analysis of power generation from biomass and wind farms in different locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 307-317.
    25. Nian, Victor, 2016. "The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation," Applied Energy, Elsevier, vol. 179(C), pages 1069-1080.
    26. Hui Wang & Jinzhuo Wu & Wenshu Lin & Zhaoping Luan, 2023. "Carbon Footprint Accounting and Influencing Factors Analysis for Forestry Enterprises in the Key State-Owned Forest Region of the Greater Khingan Range, Northeast China," Sustainability, MDPI, vol. 15(11), pages 1-21, May.
    27. Nian, Victor & Yuan, Jun, 2017. "A method for analysis of maritime transportation systems in the life cycle approach – The oil tanker example," Applied Energy, Elsevier, vol. 206(C), pages 1579-1589.
    28. Wang, Shanyong & Wang, Jing & Lin, Shoufu & Li, Jun, 2020. "How and when does information publicity affect public acceptance of nuclear energy?," Energy, Elsevier, vol. 198(C).

  94. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    3. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    4. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    5. Hehua Zhao & Hongwen Chen & Ying Fang & Apei Song, 2022. "Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    6. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    7. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    8. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    9. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    10. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    11. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    12. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    13. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    14. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    15. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    16. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    17. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    18. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    19. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    20. Zhu, Qingyuan & Xu, Chengzhen & Lee, Chien-Chiang, 2024. "Trade-induced carbon-economic inequality within China: Measurement, sources, and determinants," Energy Economics, Elsevier, vol. 136(C).
    21. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    22. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    23. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
    24. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    25. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    26. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    27. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    28. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    29. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    30. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    31. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    32. Meng, Bo & Xue, Jinjun, 2016. "Spatial spillover effects in determining China's regional CO2 emission growth : 2007-2010," IDE Discussion Papers 576, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    33. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    34. Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
    35. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    36. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    37. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    38. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    39. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    40. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    41. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    42. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    43. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    44. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    45. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    46. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    47. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    48. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    49. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    50. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    51. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    52. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    53. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    54. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    55. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).

  95. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    3. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    4. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    5. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    6. Rui Huang & Klaus Hubacek & Kuishuang Feng & Xiaojie Li & Chao Zhang, 2018. "Re-Examining Embodied SO 2 and CO 2 Emissions in China," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    7. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    8. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    9. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    10. Guo, Shan & Wang, Yao & Shen, Geoffrey Q.P. & Zhang, Bo & Wang, Hao, 2020. "Virtual built-up land transfers embodied in China’s interregional trade," Land Use Policy, Elsevier, vol. 94(C).
    11. Liu, Lirong & Huang, Guohe & Baetz, Brian & Zhang, Kaiqiang, 2018. "Environmentally-extended input-output simulation for analyzing production-based and consumption-based industrial greenhouse gas mitigation policies," Applied Energy, Elsevier, vol. 232(C), pages 69-78.
    12. Hehua Zhao & Hongwen Chen & Ying Fang & Apei Song, 2022. "Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    13. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    14. Chen, Jian & Zhao, Di, 2022. "Complexity of domestic production fragmentation and its impact on pollution emissions: Evidence from decomposed regional production length," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 127-137.
    15. Hu, Hui & Xie, Nan & Fang, Debin & Zhang, Xiaoling, 2018. "The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries," Applied Energy, Elsevier, vol. 211(C), pages 1229-1244.
    16. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.
    17. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    18. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    19. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    20. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    21. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    22. Chen, G.Q. & Li, J.S. & Chen, B. & Wen, C. & Yang, Q. & Alsaedi, A. & Hayat, T., 2016. "An overview of mercury emissions by global fuel combustion: The impact of international trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 345-355.
    23. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    24. Hehua Zhao & Hongwen Chen & Lei He, 2022. "Embodied Carbon Emissions and Regional Transfer Characteristics—Evidence from China," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    25. Yan Li & Yigang Wei & Zhang Dong, 2020. "Will China Achieve Its Ambitious Goal?—Forecasting the CO 2 Emission Intensity of China towards 2030," Energies, MDPI, vol. 13(11), pages 1-23, June.
    26. Zha, Donglan & Chen, Qian & Wang, Lijun, 2022. "Exploring carbon rebound effects in Chinese households’ consumption: A simulation analysis based on a multi-regional input–output framework," Applied Energy, Elsevier, vol. 313(C).
    27. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    28. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    29. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    30. Zhangqi Zhong & Xu Zhang & Wei Shao, 2019. "Measuring global energy-related sulfur oxides emissions embodied in trade: a multi-regional and multi-sectoral analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 401-418, January.
    31. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    32. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    33. Behrens, Paul & Rodrigues, João F.D. & Brás, Tiago & Silva, Carlos, 2016. "Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010," Applied Energy, Elsevier, vol. 173(C), pages 309-319.
    34. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    35. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    36. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    37. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    38. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    39. Weitzel, Matthias & Ma, Tao, 2014. "Emissions embodied in Chinese exports taking into account the special export structure of China," Energy Economics, Elsevier, vol. 45(C), pages 45-52.
    40. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    41. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    42. Ou, Jiamin & Meng, Jing & Zheng, Junyu & Mi, Zhifu & Bian, Yahui & Yu, Xiang & Liu, Jingru & Guan, Dabo, 2017. "Demand-driven air pollutant emissions for a fast-developing region in China," Applied Energy, Elsevier, vol. 204(C), pages 131-142.
    43. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    44. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    45. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    46. Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
    47. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    48. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    49. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    50. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    51. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    52. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    53. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    54. Ahmed, Khalid, 2017. "Revisiting the role of financial development for energy-growth-trade nexus in BRICS economies," Energy, Elsevier, vol. 128(C), pages 487-495.
    55. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    56. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    57. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    58. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    59. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Rong-Gang & Yuan, Xiaochen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," MPRA Paper 112151, University Library of Munich, Germany.
    60. Deng, Guangyao & Xu, Yan, 2017. "Accounting and structure decomposition analysis of embodied carbon trade: A global perspective," Energy, Elsevier, vol. 137(C), pages 140-151.
    61. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Assessment of nuclear energy embodied in international trade following a world multi-regional input–output approach," Energy, Elsevier, vol. 91(C), pages 91-101.
    62. Meng, Bo & Xue, Jinjun, 2016. "Spatial spillover effects in determining China's regional CO2 emission growth : 2007-2010," IDE Discussion Papers 576, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    63. Peng Chen & Hanwen Wang & Mingxing Guo & Jianjun Wang & Sinan Cai & Min Li & Kaining Sun & Yukun Wang, 2022. "Decomposition Analysis of Regional Embodied Carbon Flow and Driving Factors—Taking Shanghai as an Example," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    64. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    65. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    66. Junjun Zheng & Mingmiao Yang & Gang Ma & Qian Xu & Yujie He, 2020. "Multi-Agents-Based Modeling and Simulation for Carbon Permits Trading in China: A Regional Development Perspective," IJERPH, MDPI, vol. 17(1), pages 1-20, January.
    67. Xu, Xueliu & Mu, Mingjie & Wang, Qian, 2017. "Recalculating CO2 emissions from the perspective of value-added trade: An input-output analysis of China's trade data," Energy Policy, Elsevier, vol. 107(C), pages 158-166.
    68. Chang, Young-Tae & Shin, Sung-Ho & Lee, Paul Tae-Woo, 2014. "Economic impact of port sectors on South African economy: An input–output analysis," Transport Policy, Elsevier, vol. 35(C), pages 333-340.
    69. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    70. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
    71. Meng, Fanxin & Liu, Gengyuan & Hu, Yuanchao & Su, Meirong & Yang, Zhifeng, 2018. "Urban carbon flow and structure analysis in a multi-scales economy," Energy Policy, Elsevier, vol. 121(C), pages 553-564.
    72. Qian Liu & Suocheng Dong & Fujia Li & Hao Cheng & Shantong Li & Yang Yang, 2022. "Features, Mechanisms and Optimization of Embodied Carbon Emissions for Energy Supply Bases: Case Study of Shanxi, China," Energies, MDPI, vol. 15(6), pages 1-21, March.
    73. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    74. Gao Jingxin & Chen Yunong & Zhong Xiaoyang & Ma Xianrui, 2021. "Energy Consumption in China’s Construction Industry: Energy Driving and Driven Abilities from a Regional Perspective," Journal of Systems Science and Information, De Gruyter, vol. 9(1), pages 45-60, February.
    75. Xu, Renfei & Chen, Liming & Zhao, Yuanyuan & Xie, Rui & Chen, Xiangjie, 2024. "Partner heterogeneity and driving factors of China's export embodied energy intensity," Energy, Elsevier, vol. 307(C).
    76. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    77. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    78. Ling, Zaili & Huang, Tao & Li, Jixiang & Zhou, Sheng & Lian, Lulu & Wang, Jinxiang & Zhao, Yuan & Mao, Xiaoxuan & Gao, Hong & Ma, Jianmin, 2019. "Sulfur dioxide pollution and energy justice in Northwestern China embodied in West-East Energy Transmission of China," Applied Energy, Elsevier, vol. 238(C), pages 547-560.
    79. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    80. Xiao Hao & Wang Jianguo & Zhu Qiao & Qiao Han, 2015. "Carbon Emissions and Carbon Intensity in China’s Exports: A Contrast of SRIO and GIRIO Methods," Journal of Systems Science and Information, De Gruyter, vol. 3(6), pages 499-512, December.
    81. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    82. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    83. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    84. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    85. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    86. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    87. Kyunsuk Choi & Hiroyuki Matsuura & Hyunjoung Lee & Il Sohn, 2016. "Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    88. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    89. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    90. Ying Wang & Peipei Shang & Lichun He & Yingchun Zhang & Dandan Liu, 2018. "Can China Achieve the 2020 and 2030 Carbon Intensity Targets through Energy Structure Adjustment?," Energies, MDPI, vol. 11(10), pages 1-32, October.
    91. Yousaf Ali & Awan Memoona & Claudio Socci & Sania Binte Saleem, 2019. "Can coal replace other fossil fuels to fulfil the energy demand in Pakistan? An environmental impact analysis," Asia-Pacific Journal of Regional Science, Springer, vol. 3(2), pages 293-318, June.
    92. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    93. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    94. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    95. Hong, Jingke & Shen, Geoffrey Qiping & Guo, Shan & Xue, Fan & Zheng, Wei, 2016. "Energy use embodied in China׳s construction industry: A multi-regional input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1303-1312.
    96. Zhao, Hongyan & Zhang, Qiang & Huo, Hong & Lin, Jintai & Liu, Zhu & Wang, Haikun & Guan, Dabo & He, Kebin, 2016. "Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports," Applied Energy, Elsevier, vol. 184(C), pages 926-935.
    97. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    98. Wang, Zhenyu & Meng, Jing & Zheng, Heran & Shao, Shuai & Wang, Daoping & Mi, Zhifu & Guan, Dabo, 2018. "Temporal change in India’s imbalance of carbon emissions embodied in international trade," Applied Energy, Elsevier, vol. 231(C), pages 914-925.
    99. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    100. Zhong, Sheng & Goh, Tian & Su, Bin, 2022. "Patterns and drivers of embodied carbon intensity in international exports: The role of trade and environmental policies," Energy Economics, Elsevier, vol. 114(C).
    101. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    102. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    103. Guo, Shan & Jiang, Li & Shen, Geoffrey Q.P., 2019. "Embodied pasture land use change in China 2000-2015: From the perspective of globalization," Land Use Policy, Elsevier, vol. 82(C), pages 476-485.
    104. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    105. Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.
    106. Tian, Xu & Geng, Yong & Viglia, Silvio & Bleischwitz, Raimund & Buonocore, Elvira & Ulgiati, Sergio, 2017. "Regional disparities in the Chinese economy. An emergy evaluation of provincial international trade," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 1-11.
    107. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    108. Ianchovichina, Elena & Ivanic, Maros, 2014. "Missed Opportunities: Economic Effects of Potential Deep Trade Integration in the Levant," Conference papers 332526, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    109. Meng, Jing & Liu, Junfeng & Guo, Shan & Huang, Ye & Tao, Shu, 2016. "The impact of domestic and foreign trade on energy-related PM emissions in Beijing," Applied Energy, Elsevier, vol. 184(C), pages 853-862.
    110. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    111. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    112. Sanmang Wu & Yalin Lei & Shantong Li, 2017. "Provincial carbon footprints and interprovincial transfer of embodied CO2 emissions in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 537-558, January.
    113. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    114. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    115. Qianqian Xiao & Zi’ang Chu & Changfeng Shi, 2024. "The Inter-Regional Embodied Carbon Flow Pattern in China Based on Carbon Peaking Stress," Energies, MDPI, vol. 17(12), pages 1-18, June.
    116. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    117. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).
    118. Zhang, Youguo, 2017. "Interregional carbon emission spillover–feedback effects in China," Energy Policy, Elsevier, vol. 100(C), pages 138-148.
    119. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    120. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    121. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    122. Choi, Jun-Ki & Bakshi, Bhavik R. & Hubacek, Klaus & Nader, Jordan, 2016. "A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies," Applied Energy, Elsevier, vol. 184(C), pages 830-839.
    123. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    124. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    125. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    126. Arce, Guadalupe & López, Luis Antonio & Guan, Dabo, 2016. "Carbon emissions embodied in international trade: The post-China era," Applied Energy, Elsevier, vol. 184(C), pages 1063-1072.
    127. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    128. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    129. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    130. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    131. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    132. Chen, Weidong & Wu, Fangyong & Geng, Wenxin & Yu, Guanyi, 2017. "Carbon emissions in China’s industrial sectors," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 264-273.
    133. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    134. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    135. Zhenhua Zhang & Guoxing Zhang & Shunfeng Song & Bin Su, 2020. "Spatial Heterogeneity Influences of Environmental Control and Informal Regulation on Air Pollutant Emissions in China," IJERPH, MDPI, vol. 17(13), pages 1-22, July.

  96. Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.

    Cited by:

    1. Jianwei Xu & Shuxin Liu, 2024. "Current status, evolutionary path, and development trends of low-carbon technology innovation: a bibliometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 24151-24182, September.
    2. Strušnik, Dušan & Avsec, Jurij, 2015. "Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant," Energy, Elsevier, vol. 80(C), pages 318-330.
    3. Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
    4. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Tongsopit, Sopitsuda & Kittner, Noah & Chang, Youngho & Aksornkij, Apinya & Wangjiraniran, Weerin, 2016. "Energy security in ASEAN: A quantitative approach for sustainable energy policy," Energy Policy, Elsevier, vol. 90(C), pages 60-72.
    6. Khuram, Shahzad & Rehman, Ch. Abdul & Nasir, Nadia & Elahi, Natasha Saman, 2023. "A bibliometric analysis of quality assurance in higher education institutions: Implications for assessing university's societal impact," Evaluation and Program Planning, Elsevier, vol. 99(C).
    7. Zheng, Danxing & Wu, Zhaohui & Huang, Weijia & Chen, Youhui, 2017. "Energy quality factor of materials conversion and energy quality reference system," Applied Energy, Elsevier, vol. 185(P1), pages 768-778.
    8. Liu, Xuezhi & Mancarella, Pierluigi, 2016. "Modelling, assessment and Sankey diagrams of integrated electricity-heat-gas networks in multi-vector district energy systems," Applied Energy, Elsevier, vol. 167(C), pages 336-352.
    9. Montero Carrero, Marina & De Paepe, Ward & Bram, Svend & Parente, Alessandro & Contino, Francesco, 2017. "Does humidification improve the micro Gas Turbine cycle? Thermodynamic assessment based on Sankey and Grassmann diagrams," Applied Energy, Elsevier, vol. 204(C), pages 1163-1171.
    10. Bühler, Fabian & Nguyen, Tuong-Van & Elmegaard, Brian, 2016. "Energy and exergy analyses of the Danish industry sector," Applied Energy, Elsevier, vol. 184(C), pages 1447-1459.
    11. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    12. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    13. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    14. Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
    15. Samia Jamshed & Nauman Majeed, 2022. "Framing evolution and knowledge domain visualization of business ethics research (1975–2019): a large-scale scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4269-4294, December.
    16. Honghua Yang & Linwei Ma & Zheng Li, 2020. "A Method for Analyzing Energy-Related Carbon Emissions and the Structural Changes: A Case Study of China from 2005 to 2015," Energies, MDPI, vol. 13(8), pages 1-24, April.
    17. Lupton, R.C. & Allwood, J.M., 2017. "Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 141-151.
    18. Kun Shi & Yi Zhou & Zhen Zhang, 2021. "Mapping the Research Trends of Household Waste Recycling: A Bibliometric Analysis," Sustainability, MDPI, vol. 13(11), pages 1-23, May.
    19. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    20. May, Gökan & Barletta, Ilaria & Stahl, Bojan & Taisch, Marco, 2015. "Energy management in production: A novel method to develop key performance indicators for improving energy efficiency," Applied Energy, Elsevier, vol. 149(C), pages 46-61.
    21. Hualin Xie & Yanwei Zhang & Zhilong Wu & Tiangui Lv, 2020. "A Bibliometric Analysis on Land Degradation: Current Status, Development, and Future Directions," Land, MDPI, vol. 9(1), pages 1-37, January.
    22. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    23. Carmen Ruiz-Puente & Daniel Jato-Espino, 2020. "Systemic Analysis of the Contributions of Co-Located Industrial Symbiosis to Achieve Sustainable Development in an Industrial Park in Northern Spain," Sustainability, MDPI, vol. 12(14), pages 1-28, July.
    24. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    25. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    26. Diankai Wang & Inna Gryshova & Anush Balian & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Olexandr Davidyuk, 2022. "Assessment of Power System Sustainability and Compromises between the Development Goals," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    27. Lingjie Tang & Chang’an Zhang, 2023. "Global Research on International Students’ Intercultural Adaptation in a Foreign Context: A Visualized Bibliometric Analysis of the Scientific Landscape," SAGE Open, , vol. 13(4), pages 21582440231, December.
    28. Amedeo Ganciu & Mara Balestrieri, 2023. "Visual Analysis to Assess Attraction and Organisation of Contemporary Metropolitan Systems—A Case Study of Central and Northern Italy," Sustainability, MDPI, vol. 16(1), pages 1-25, December.
    29. A.V. Kiselev & E.R. Magaril & I.S. Glushankova & L.V. Rudakova, 2020. "Analysis of Sewage Sludge Alternatives Towards Circular Economy," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 19(3), pages 329-347.
    30. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    31. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2019. "An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 256(C).
    32. Ishara Rathnayake & J. Jorge Ochoa & Ning Gu & Raufdeen Rameezdeen & Larissa Statsenko & Sukhbir Sandhu, 2024. "Strategies for Enhancing Sharing Economy Practices Across Diverse Industries: A Systematic Review," Sustainability, MDPI, vol. 16(20), pages 1-32, October.
    33. Wu, Tai-Hsi & Huang, Shi-Wei & Lin, Mei-Chen & Wang, Hsin-Hua, 2023. "Energy security performance evaluation revisited: From the perspective of the energy supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    34. Padilla, Ricardo Vasquez & Soo Too, Yen Chean & Benito, Regano & Stein, Wes, 2015. "Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers," Applied Energy, Elsevier, vol. 148(C), pages 348-365.

  97. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    3. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    4. Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
    5. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    6. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    7. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    8. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    9. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    10. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    11. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    12. Pradhan, Basanta K. & Ghosh, Joydeep & Yao, Yun-Fei & Liang, Qiao-Mei, 2017. "Carbon pricing and terms of trade effects for China and India: A general equilibrium analysis," Economic Modelling, Elsevier, vol. 63(C), pages 60-74.
    13. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    14. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    15. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    16. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    17. Liu, Huizheng & Zong, Zhe & Hynes, Kate & De Bruyne, Karolien, 2020. "Can China reduce the carbon emissions of its manufacturing exports by moving up the global value chain?," Research in International Business and Finance, Elsevier, vol. 51(C).
    18. Yuhuan Zhao & Zhonghua Zhang & Song Wang & Shaojun Wang, 2014. "CO 2 Emissions Embodied in China's Foreign Trade: An Investigation from the Perspective of Global Vertical Specialization," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 22(4), pages 102-120, July.
    19. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    20. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    21. Zhang, Yi & Fan, Ying & Xia, Yan, 2021. "Structural evolution of energy embodied in final demand as economic growth: Empirical evidence from 25 countries," Energy Policy, Elsevier, vol. 156(C).
    22. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    23. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    24. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2018. "China’s changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    25. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    26. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    27. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    28. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    29. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    30. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    31. Felipe Avilés-Lucero & Gabriel Peraita & Camilo Valladares, 2021. "Huella de Carbono para la Economía Chilena 2017," Economic Statistics Series 135, Central Bank of Chile.
    32. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    33. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    34. Ma, Ning & Sun, WenLi & Li, Huajiao & Zhou, Xing & Sun, Yihua & Ren, Bo, 2023. "Industrial linkage of global carbon emissions: A heterogeneous ownership perspective," Energy Policy, Elsevier, vol. 172(C).
    35. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    36. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    37. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    38. Ferran Sancho, 2018. "An Armington-Leontief Model," UFAE and IAE Working Papers 963.18, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    39. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    40. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    41. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    42. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    43. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    44. Chuanwang Sun & Lanyun Chen & Guangxiao Huang, 2019. "Decomposition Analysis of CO 2 Emissions Embodied in the International Trade of Russia," Sustainability, MDPI, vol. 12(1), pages 1-22, December.
    45. Weitzel, Matthias & Ma, Tao, 2014. "Emissions embodied in Chinese exports taking into account the special export structure of China," Energy Economics, Elsevier, vol. 45(C), pages 45-52.
    46. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    47. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    48. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    49. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    50. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    51. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    52. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    53. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    54. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    55. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    56. Du, Huibin & Liu, Huiwen & Zhang, Zengkai, 2022. "The unequal exchange of air pollution and economic benefits embodied in Beijing-Tianjin-Hebei's consumption," Ecological Economics, Elsevier, vol. 195(C).
    57. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    58. Yang, Xue & Xu, He & Su, Bin, 2022. "Factor decomposition for global and national aggregate energy intensity change during 2000–2014," Energy, Elsevier, vol. 254(PB).
    59. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    60. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    61. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    62. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    63. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    64. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    65. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    66. Yue Liu & Ying Qu & Zhen Lei & Wenhua Wang, 2020. "Multi-sector reduction potential of embodied carbon emissions in China: a case study of Liaoning province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5585-5602, August.
    67. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    68. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    69. Zhu, Kunfu & Guo, Xuefan & Zhang, Zengkai, 2022. "Reevaluation of the carbon emissions embodied in global value chains based on an inter-country input-output model with multinational enterprises," Applied Energy, Elsevier, vol. 307(C).
    70. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    71. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    72. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    73. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    74. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    75. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    76. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    77. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    78. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    79. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    80. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    81. Hana Nielsen, 2018. "Industrial Intensification and Energy Embodied in Trade: Long‐Run Energy Perspective of the Planned Economy of Czechoslovakia," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1436-1450, December.
    82. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    83. Zhang, Hongwu & Shi, Xunpeng & Wang, Keying & Xue, Jinjun & Song, Ligang & Sun, Yongping, 2020. "Intertemporal lifestyle changes and carbon emissions: Evidence from a China household survey," Energy Economics, Elsevier, vol. 86(C).
    84. Guerra, Ana-Isabel & Sancho, Ferran, 2018. "Positive and normative analysis of the output opportunity costs of GHG emissions reductions: A comparison of the six largest EU economies," Energy Policy, Elsevier, vol. 122(C), pages 45-62.
    85. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    86. Kyunsuk Choi & Hiroyuki Matsuura & Hyunjoung Lee & Il Sohn, 2016. "Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    87. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    88. Niu, Meng & Wang, Zhenguo & Zhang, Yabin, 2022. "How information and communication technology drives (routine and non-routine) jobs: Structural path and decomposition analysis for China," Telecommunications Policy, Elsevier, vol. 46(1).
    89. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    90. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    91. Bin Fan & Yun Zhang & Xiuzhen Li & Xiao Miao, 2019. "Trade Openness and Carbon Leakage: Empirical Evidence from China’s Industrial Sector," Energies, MDPI, vol. 12(6), pages 1-16, March.
    92. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    93. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    94. Hong, Jingke & Shen, Geoffrey Qiping & Guo, Shan & Xue, Fan & Zheng, Wei, 2016. "Energy use embodied in China׳s construction industry: A multi-regional input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1303-1312.
    95. Rocco, Matteo V. & Casalegno, Andrea & Colombo, Emanuela, 2018. "Modelling road transport technologies in future scenarios: Theoretical comparison and application of Well-to-Wheels and Input-Output analyses," Applied Energy, Elsevier, vol. 232(C), pages 583-597.
    96. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    97. Darian McBain & Ali Alsamawi, 2014. "Quantitative accounting for social economic indicators," Natural Resources Forum, Blackwell Publishing, vol. 38(3), pages 193-202, August.
    98. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    99. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    100. Jing-Li Fan & Qian Wang & Shiwei Yu & Yun-Bing Hou & Yi-Ming Wei, 2017. "The evolution of CO2 emissions in international trade for major economies: a perspective from the global supply chain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(8), pages 1229-1248, December.
    101. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    102. Jieming Chou & Fan Yang & Zhongxiu Wang & Wenjie Dong, 2021. "The Impact on Carbon Emissions of China with the Trade Situation versus the U.S," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    103. Tao Ding & Yadong Ning & Yan Zhang, 2017. "The Contribution of China’s Outward Foreign Direct Investment (OFDI) to the Reduction of Global CO 2 Emissions," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    104. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    105. Zhang, Yimeng & Wang, Feng & Zhang, Bing, 2023. "The impacts of household structure transitions on household carbon emissions in China," Ecological Economics, Elsevier, vol. 206(C).
    106. Markaki, M. & Belegri-Roboli, A. & Sarafidis, Υ. & Mirasgedis, S., 2017. "The carbon footprint of Greek households (1995–2012)," Energy Policy, Elsevier, vol. 100(C), pages 206-215.
    107. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    108. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    109. Fangjie Cao & Yun Qiu & Qianxin Wang & Yan Zou, 2022. "Urban Form and Function Optimization for Reducing Carbon Emissions Based on Crowd-Sourced Spatio-Temporal Data," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    110. Zhang, Youguo, 2017. "Interregional carbon emission spillover–feedback effects in China," Energy Policy, Elsevier, vol. 100(C), pages 138-148.
    111. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    112. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    113. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    114. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
    115. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    116. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    117. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    118. Jiang, Lei & He, Shixiong & Zhong, Zhangqi & Zhou, Haifeng & He, Lingyun, 2019. "Revisiting environmental kuznets curve for carbon dioxide emissions: The role of trade," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 245-257.
    119. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    120. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    121. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    122. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    123. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    124. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.
    125. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.

  98. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.

    Cited by:

    1. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    2. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    3. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    4. Li, Meng & Meng, Bo & Gao, Yuning & Wang, Zhi & Zhang, Yaxiong & Sun, Yongping, 2022. "Tracing CO₂ emissions in global value chains: Multinationals vs. domestically-owned firms," Sustainable Global Supply Chains Discussion Papers 2, Research Network Sustainable Global Supply Chains.
    5. Kênia Barreiro de Souza & Luiz Carlos de Santana Ribeiro & Fernando Salgueiro Perobelli, 2016. "Reducing Brazilian greenhouse gas emissions: scenario simulations of targets and policies," Economic Systems Research, Taylor & Francis Journals, vol. 28(4), pages 482-496, October.
    6. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    7. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    8. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    9. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    10. Banacloche, Santacruz & Cadarso, María Ángeles & Monsalve, Fabio, 2020. "Implications of measuring value added in exports with a regional input-output table. A case of study in South America," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 130-140.
    11. Zhang, Zengkai & Duan, Yuwan & Zhang, Wei, 2019. "Economic gains and environmental costs from China's exports: Regional inequality and trade heterogeneity," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Yagi, Michiyuki & Managi, Shunsuke, 2023. "The spillover effects of rising energy prices following 2022 Russian invasion of Ukraine," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 680-695.
    13. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    14. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    15. Hehua Zhao & Hongwen Chen & Ying Fang & Apei Song, 2022. "Transfer Characteristics of Embodied Carbon Emissions in Export Trade—Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    16. Wan, Liyang & Wang, Can & Cai, Wenjia, 2016. "Impacts on water consumption of power sector in major emitting economies under INDC and longer term mitigation scenarios: An input-output based hybrid approach," Applied Energy, Elsevier, vol. 184(C), pages 26-39.
    17. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    18. Ribeiro, Luiz Carlos de Santana & Leão, Eder Johnson de Area & Freitas, Lúcio Flávio da Silva, 2018. "Greenhouse Gases Emissions and Economic Performance of Livestock, an Environmental Input-Output Analysis," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 56(2), January.
    19. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    20. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    21. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    22. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    23. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    24. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    25. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    26. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    27. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    28. Jayanthakumaran, Kankesu & Liu, Ying, 2016. "Bi-lateral CO2 emissions embodied in Australia–China trade," Energy Policy, Elsevier, vol. 92(C), pages 205-213.
    29. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    30. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
    31. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    32. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    33. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    34. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    35. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    36. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    37. Weitzel, Matthias & Ma, Tao, 2014. "Emissions embodied in Chinese exports taking into account the special export structure of China," Energy Economics, Elsevier, vol. 45(C), pages 45-52.
    38. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    39. Fang, Delin & Chen, Bin, 2017. "Linkage analysis for the water–energy nexus of city," Applied Energy, Elsevier, vol. 189(C), pages 770-779.
    40. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    41. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    42. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    43. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    44. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    45. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    46. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    47. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    48. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    49. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    50. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    51. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    52. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    53. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    54. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    55. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
    56. Meng, Bo & Xue, Jinjun, 2016. "Spatial spillover effects in determining China's regional CO2 emission growth : 2007-2010," IDE Discussion Papers 576, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    57. Zhou, Bo & Zhang, Cheng & Wang, Qunwei & Zhou, Dequn, 2020. "Does emission trading lead to carbon leakage in China? Direction and channel identifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    58. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    59. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    60. Xu, Xueliu & Mu, Mingjie & Wang, Qian, 2017. "Recalculating CO2 emissions from the perspective of value-added trade: An input-output analysis of China's trade data," Energy Policy, Elsevier, vol. 107(C), pages 158-166.
    61. Chang, Young-Tae & Shin, Sung-Ho & Lee, Paul Tae-Woo, 2014. "Economic impact of port sectors on South African economy: An input–output analysis," Transport Policy, Elsevier, vol. 35(C), pages 333-340.
    62. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    63. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    64. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    65. Yan Song & Ming Zhang & Shuang Dai, 2015. "Study on China’s energy-related CO 2 emission at provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 89-100, May.
    66. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    67. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    68. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    69. Ziheng Niu & Li Chai, 2022. "Carbon Emission Reduction by Bicycle-Sharing in China," Energies, MDPI, vol. 15(14), pages 1-17, July.
    70. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    71. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    72. Huang, Junbing & Li, Xinghao & Wang, Yajun & Lei, Hongyan, 2021. "The effect of energy patents on China's carbon emissions: Evidence from the STIRPAT model," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    73. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    74. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Guo, Lin & Zhang, Kun & Xue, Jinjun & Liang, Qiao-Mei, 2019. "Distributional impact of carbon pricing in Chinese provinces," Energy Economics, Elsevier, vol. 81(C), pages 327-340.
    75. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    76. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    77. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    78. Zhang, Zengkai & Lin, Jintai, 2018. "From production-based to consumption-based regional carbon inventories: Insight from spatial production fragmentation," Applied Energy, Elsevier, vol. 211(C), pages 549-567.
    79. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    80. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    81. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    82. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    83. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "The effects of border-crossing frequencies associated with carbon footprints on border carbon adjustments," Energy Economics, Elsevier, vol. 65(C), pages 105-114.
    84. Ji Guo & Lei Zhou & Xianhua Wu, 2018. "Tendency of Embodied Carbon Change in the Export Trade of Chinese Manufacturing Industry from 2000 to 2015 and Its Driving Factors," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    85. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    86. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    87. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    88. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    89. Chen, Quanrun & Löschel, Andreas & Pei, Jiansuo & Peters, Glen P. & Xue, Jinjun & Zhao, Zhongxiu, 2019. "Processing trade, foreign outsourcing and carbon emissions in China," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 1-12.
    90. Xia, X.H. & Hu, Y. & Chen, G.Q. & Alsaedi, A. & Hayat, T. & Wu, X.D., 2015. "Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 49-58.
    91. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
    92. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    93. Wang, Saige & Liu, Yating & Chen, Bin, 2018. "Multiregional input–output and ecological network analyses for regional energy–water nexus within China," Applied Energy, Elsevier, vol. 227(C), pages 353-364.
    94. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    95. Jiang, Lei & He, Shixiong & Zhong, Zhangqi & Zhou, Haifeng & He, Lingyun, 2019. "Revisiting environmental kuznets curve for carbon dioxide emissions: The role of trade," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 245-257.
    96. Meng, Bo & Liu, Yu & Andrew, Robbie & Zhou, Meifang & Hubacek, Klaus & Xue, Jinjun & Peters, Glen & Gao, Yuning, 2018. "More than half of China’s CO2 emissions are from micro, small and medium-sized enterprises," Applied Energy, Elsevier, vol. 230(C), pages 712-725.
    97. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    98. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    99. Xuemei Jiang & Quanrun Chen & Cuihong Yang, 2018. "A Comparison Of Producer, Consumer And Shared Responsibility Based On A New Inter-Country Input–Output Table Capturing Trade Heterogeneity," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 295-311, March.
    100. Yuting Dang & Yating Song & Muhammad Mohiuddin & Dan Sheng, 2022. "Towards Cleaner Production Ecosystem: An Analysis of Embodied Industrial Pollution in International Trade of China’s Processing versus Normal Exports," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    101. Lawrence D. LaPlue & Christopher A. Erickson, 2020. "Outsourcing, trade, technology, and greenhouse gas emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 217-245, April.
    102. Ji, Xi & Su, Pinyi & Liu, Yifang & Wu, Guowei & Wu, Xudong, 2023. "Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain," Land Use Policy, Elsevier, vol. 128(C).

  99. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.

    Cited by:

    1. Llop Llop, Maria, 2018. "Decomposing the Changes in Water Intensity in a Mediterranean Region," Working Papers 2072/321558, Universitat Rovira i Virgili, Department of Economics.
    2. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    3. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    4. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    5. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    6. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    7. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    8. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    9. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    10. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    11. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    12. Rao, Guangming & Liao, Jiao & Zhu, Yanping & Guo, Lin, 2022. "Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt sectors: A sectoral correlation effects perspective," Applied Energy, Elsevier, vol. 307(C).
    13. Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
    14. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
    15. Li, DuoQi & Wang, DuanYi, 2016. "Decomposition analysis of energy consumption for an freeway during its operation period: A case study for Guangdong, China," Energy, Elsevier, vol. 97(C), pages 296-305.
    16. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    17. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    18. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    19. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    20. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    21. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    22. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    23. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    24. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    25. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    26. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    27. Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
    28. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    29. Arunima Malik & Jun Lan, 2016. "The role of outsourcing in driving global carbon emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 168-182, June.
    30. Oludolapo A Olanrewaju, 2018. "Energy consumption in South African industry: A decomposition analysis using the LMDI approach," Energy & Environment, , vol. 29(2), pages 232-244, March.
    31. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    32. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    33. Xinjie Jiang & Fengjun Xie, 2024. "Decomposition Analysis of Carbon Emission Drivers and Peaking Pathways for Key Sectors under China’s Dual Carbon Goals: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 16(13), pages 1-23, July.
    34. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    35. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    36. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    37. Beisheim, Benedikt & Krämer, Stefan & Engell, Sebastian, 2020. "Hierarchical aggregation of energy performance indicators in continuous production processes," Applied Energy, Elsevier, vol. 264(C).
    38. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    39. Marie Hyland & Jevgenijs Steinbuks, 2019. "Capital Adjustment and the Optimal Fuel Choice," The Energy Journal, , vol. 40(5), pages 73-96, September.
    40. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    41. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    42. Qiang Wang & Shasha Wang & Rongrong Li, 2019. "Determinants of Decoupling Economic Output from Carbon Emission in the Transport Sector: A Comparison Study of Four Municipalities in China," IJERPH, MDPI, vol. 16(19), pages 1-21, October.
    43. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
    44. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    45. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    46. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    47. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    48. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    49. Amira Ben Hammamia & Ahlem Dhakhlaoui, 2023. "Determinants and Prediction of CO2 Emissions in Tunisia: LMDI Decomposition Approach of an Error Correction Model," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 102-108, November.
    50. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    51. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    52. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    53. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo & Wang, Gewei, 2019. "Decoupling of emissions and GDP: Evidence from aggregate and provincial Chinese data," Energy Economics, Elsevier, vol. 77(C), pages 105-118.
    54. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    55. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    56. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    57. Hongkuan Zang & Lirong Zhang & Ye Xu & Wei Li, 2020. "Dynamic Input–Output Analysis of a Carbon Emission System at the Aggregated and Disaggregated Levels: A Case Study in the Northeast Industrial District," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    58. Nooraddin Sharify & Ramezan Hosseinzadeh, 2015. "Sources of Change in Energy Consumption in Iran: A Structural Decomposition Analysis," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(3), pages 325-339, Autumn.
    59. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    60. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    61. Ana-Isabel Guerra & Ferran Sancho, 2013. "A Linear Price Model With Extractions," ERSA conference papers ersa13p281, European Regional Science Association.
    62. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    63. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    64. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    65. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    66. Yang, Yu & Zhou, Yannan & Shan, Yuli & Hubacek, Klaus, 2024. "The shift of embodied energy flows among the Global South and Global North in the post-globalisation era," Energy Economics, Elsevier, vol. 131(C).
    67. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    68. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    69. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    70. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    71. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2018. "China’s changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    72. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    73. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    74. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    75. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
    76. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    77. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    78. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    79. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    80. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    81. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    82. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    83. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    84. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    85. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    86. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    87. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
    88. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    89. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    90. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    91. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    92. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    93. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    94. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    95. Löschel, Andreas & Rexhäuser, Sascha & Schymura, Michael, 2013. "Trade and the environment: An application of the WIOD database," ZEW Discussion Papers 13-005, ZEW - Leibniz Centre for European Economic Research.
    96. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
    97. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    98. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    99. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    100. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    101. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    102. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    103. Yang Lianling & Yang Cuihong, 2017. "Changes in domestic value added in China’s exports: a structural decomposition analysis approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-12, December.
    104. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    105. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    106. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
    107. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    108. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    109. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    110. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    111. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    112. Lyudmila Yurievna Bogachkova & Shamam Garnikovna Khurshudyan, 2015. "Quantitative Analysis of Energy Efficiency Indices in the Regions of the Russian Federation as Exemplified by Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1033-1041.
    113. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    114. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    115. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    116. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    117. Allegretti, G. & Montoya, M.A. & Bertussi, L.A.S. & Talamini, E., 2022. "When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    118. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
    119. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    120. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    121. Vadim V. Krivirotov & Aleksey V. Kalina & Anastasiya I. Savelyeva, 2018. "Energy Efficiency Assessment of Copper Producers: Theory and Practice," Journal of New Economy, Ural State University of Economics, vol. 19(5), pages 107-116, October.
    122. Wang, Jing & Rickman, Dan S. & Yu, Yihua, 2022. "Dynamics between global value chain participation, CO2 emissions, and economic growth: Evidence from a panel vector autoregression model," Energy Economics, Elsevier, vol. 109(C).
    123. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    124. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    125. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    126. Shinichiro Nakamura, 2020. "3EID and Waste IO: the state of environmentally extended Input-Output Analysis in Japan," Working Papers 2010, Waseda University, Faculty of Political Science and Economics.
    127. Moreau, Vincent & Neves, Catarina Amarante De Oliveira & Vuille, François, 2019. "Is decoupling a red herring? The role of structural effects and energy policies in Europe," Energy Policy, Elsevier, vol. 128(C), pages 243-252.
    128. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    129. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    130. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    131. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    132. De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," ZEW Discussion Papers 13-052, ZEW - Leibniz Centre for European Economic Research.
    133. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    134. Shang, Wen-Long & Ling, Yantao & Ochieng, Washington & Yang, Linchuan & Gao, Xing & Ren, Qingzhong & Chen, Yilin & Cao, Mengqiu, 2024. "Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality," Applied Energy, Elsevier, vol. 365(C).
    135. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    136. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    137. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    138. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    139. Chen, Zhenni & Zhang, Zengkai & Feng, Tong & Liu, Diyi, 2023. "What drives the temporal dynamics and spatial differences of urban and rural household emissions in China?," Energy Economics, Elsevier, vol. 125(C).
    140. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    141. Peggy Hariwan & Bambang Juanda & Sri Mulatsih & Himawan Hariyoga, 2021. "Analysis of Energy Efficiency on the Manufacturing Industry in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 28-36.
    142. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
    143. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    144. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    145. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.
    146. Liu, Qilu & Cheng, Kaiming & Zhuang, Yanjie, 2022. "Estimation of city energy consumption in China based on downscaling energy balance tables," Energy, Elsevier, vol. 256(C).
    147. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    148. Rui Song & Jing Liu & Kunyu Niu & Yiyu Feng, 2023. "Comparative Analysis of Trade’s Impact on Agricultural Carbon Emissions in China and the United States," Agriculture, MDPI, vol. 13(10), pages 1-16, October.
    149. Peng Qi & Jianlei Lang & Xiaoqi Wang & Ying Zhou & Haoyun Qi & Shuiyuan Cheng, 2024. "The Coordinated Effects of CO 2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    150. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    151. Ming Cao & Wei Kang & Qingren Cao & M. Jawad Sajid, 2020. "Estimating Chinese rural and urban residents’ carbon consumption and its drivers: considering capital formation as a productive input," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5443-5464, August.
    152. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    153. Qiumeng Zhong & Hui Li & Sai Liang & Jetashree & Xiaohui Wu & Jianchuan Qi & Shuxiao Wang, 2022. "Changes of production and consumption structures in coastal regions lead to mercury emission control in China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1760-1770, October.
    154. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    155. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    156. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    157. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    158. Liu, Xiaoqian & Cifuentes-Faura, Javier & Zhao, Shikuan & Wang, Long, 2023. "Government environmental attention and carbon emissions governance: Firm-level evidence from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 121-142.
    159. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    160. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    161. Qimiao Xie & Qidi Jiang & Jarek Kurnitski & Jiahang Yang & Zihao Lin & Shiqi Ye, 2024. "Quantitative Carbon Emission Prediction Model to Limit Embodied Carbon from Major Building Materials in Multi-Story Buildings," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    162. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    163. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    164. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    165. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    166. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    167. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    168. Wang, Yang & Liu, Yongzhang & Huang, Liqiao & Zhang, Qingyu & Gao, Wei & Sun, Qian & Li, Xi, 2022. "Decomposition the driving force of regional electricity consumption in Japan from 2001 to 2015," Applied Energy, Elsevier, vol. 308(C).
    169. Feng Xu & Nan Xiang & Jingjing Yan & Lujun Chen & Peter Nijkamp & Yoshiro Higano, 2015. "Dynamic simulation of China’s carbon emission reduction potential by 2020," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 15-27, March.
    170. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    171. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    172. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    173. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    174. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    175. Li, Ying & Beeton, R.J.S. & Halog, Anthony & Sigler, Thomas, 2016. "Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 87-98.
    176. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    177. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    178. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    179. Ming Zhang & Peng Li, 2015. "Analyzing the impact of urbanization on energy consumption in Jiangsu Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 177-190, March.
    180. Gobong Choi & Taeyoon Kim & Minchul Kim, 2021. "LMDI Decomposition Analysis of E-Waste Generation in the ASEAN," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    181. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    182. Lingying Pan & Zheng Guo & Pei Liu & Linwei Ma & Zheng Li, 2013. "Comparison and Analysis of Macro Energy Scenarios in China and a Decomposition-Based Approach to Quantifying the Impacts of Economic and Social Development," Energies, MDPI, vol. 6(7), pages 1-22, July.
    183. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    184. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    185. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    186. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
    187. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    188. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2017. "Energy-economic recovery resilience with Input-Output linear programming models," Energy Economics, Elsevier, vol. 68(C), pages 177-191.
    189. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    190. Rui Song & Jing Liu & Kunyu Niu, 2023. "Agricultural Carbon Emissions Embodied in China’s Foreign Trade and Its Driving Factors," Sustainability, MDPI, vol. 15(1), pages 1-18, January.
    191. Wu, Feng & Huang, Ningyu & Zhang, Qian & Qiao, Zhi & Zhan, Ni-ni, 2020. "Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach," Energy, Elsevier, vol. 190(C).
    192. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    193. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    194. Yan, Ran & Ma, Minda & Zhou, Nan & Feng, Wei & Xiang, Xiwang & Mao, Chao, 2023. "Towards COP27: Decarbonization patterns of residential building in China and India," Applied Energy, Elsevier, vol. 352(C).
    195. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    196. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    197. Changfeng Shi & Yue Yu & Chenjun Zhang & Qiyong Chen, 2024. "What drives carbon emissions reduction in Beijing? An empirical study based on SDA and SPD," Energy & Environment, , vol. 35(4), pages 1729-1752, June.
    198. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    199. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
    200. Meng, Bo & Xue, Jinjun, 2016. "Spatial spillover effects in determining China's regional CO2 emission growth : 2007-2010," IDE Discussion Papers 576, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    201. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    202. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
    203. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    204. Xin Long Xu & Sen Qiao & Hsing Hung Chen, 2020. "Exploring the efficiency of new energy generation: Evidence from OECD and non-OECD countries," Energy & Environment, , vol. 31(3), pages 389-404, May.
    205. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    206. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    207. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    208. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
    209. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    210. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Zhao, Zhongxiu & Jiao, Aodong, 2023. "Decomposing the carbon footprints of multinational enterprises along global value chains," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 13-28.
    211. Li, Jin & Hu, Shanying, 2017. "History and future of the coal and coal chemical industry in China," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 13-24.
    212. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    213. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    214. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    215. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    216. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    217. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    218. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    219. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
    220. Deichmann, Uwe & Reuter, Anna & Vollmer, Sebastian & Zhang, Fan, 2019. "The relationship between energy intensity and economic growth: New evidence from a multi-country multi-sectorial dataset," World Development, Elsevier, vol. 124(C), pages 1-1.
    221. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    222. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    223. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    224. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    225. Zeballos, Eliana & Sinclair, Wilson & Park, Timothy, 2021. "Understanding the Components of U.S. Food Expenditures During Recessionary and Non-Recessionary Periods," USDA Miscellaneous 316348, United States Department of Agriculture.
    226. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    227. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    228. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    229. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    230. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    231. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    232. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    233. Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
    234. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    235. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    236. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    237. Shen Yilin & Guo Ying & Guo Yuanyuan & Wu Lanzhen & Shen Yanjun, 2024. "Evaluating water resources sustainability of water-scarcity basin from a scope of WEF-Nexus decomposition: the case of Yellow River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29583-29603, November.
    238. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    239. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," MPRA Paper 87891, University Library of Munich, Germany.
    240. Mengru Song & Yanjun Wang & Cheng Wang & Walter Musakwa & Yiye Ji, 2024. "Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    241. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    242. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    243. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    244. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    245. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    246. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    247. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    248. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    249. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    250. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    251. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    252. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    253. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    254. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    255. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
    256. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    257. Li, Yingzhu & Su, Bin, 2024. "Identification of the bias in embodied emissions flows and their sources," Energy Economics, Elsevier, vol. 136(C).
    258. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    259. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    260. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    261. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    262. López, Xesús Pereira & de la Torre Cuevas, Fernando, 2023. "An alternative for tracing the path between supply and use tables in current and constant prices," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 293-302.
    263. Kerong Zhang & Liangyu Jiang & Wuyi Liu, 2024. "Toward the Construction of a Sustainable Society: Assessing the Temporal Variations and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    264. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    265. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    266. Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
    267. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    268. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    269. Jiasha Fu & Fan Wang & Jin Guo, 2024. "Decoupling Economic Growth from Carbon Emissions in the Yangtze River Economic Belt of China: From the Coordinated Regional Development Perspective," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    270. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    271. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    272. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    273. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    274. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    275. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    276. Sun, Chen & Song, Junnian & Zhang, Dongqi & Wang, Xiaofan & Yang, Wei & Qi, Zhimin & Chen, Shaoqing, 2023. "Tracing urban carbon footprints differentiating supply chain complexity: A metropolis case," Energy, Elsevier, vol. 282(C).
    277. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    278. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    279. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    280. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    281. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    282. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    283. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    284. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    285. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    286. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    287. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.
    288. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    289. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
    290. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    291. Nadezda Pakhomova & Kurt Knut Richter & Viacheslav Zhigalov & Aleksandra Malova, 2017. "Management of Energy-Efficiency in the Context of New Climate Policy," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 183-195.
    292. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    293. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    294. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    295. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    296. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    297. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    298. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    299. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
    300. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    301. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    302. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    303. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
    304. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
    305. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    306. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    307. Lei Qiu & Jingyi Huang & Wenjuan Niu, 2018. "Decoupling and Driving Factors of Economic Growth and Groundwater Consumption in the Coastal Areas of the Yellow Sea and the Bohai Sea," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    308. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    309. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    310. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    311. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    312. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    313. Kirill Muradov, 2021. "Structural decomposition analysis with disaggregate factors within the Leontief inverse," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    314. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    315. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    316. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    317. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    318. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    319. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    320. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    321. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    322. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    323. Wei Shi & Zhiquan Sha & Fuwei Qiao & Wenwen Tang & Chuyu Luo & Yali Zheng & Chunli Wang & Jun Ge, 2023. "Study on the Temporal and Spatial Evolution of China’s Carbon Dioxide Emissions and Its Emission Reduction Path," Energies, MDPI, vol. 16(2), pages 1-16, January.
    324. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    325. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    326. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    327. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    328. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    329. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    330. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    331. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    332. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    333. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    334. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    335. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Zhang, Qiang & Zhao, Hongyan & Bi, Jun, 2015. "A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing," Energy, Elsevier, vol. 81(C), pages 294-303.
    336. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    337. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    338. Duarte, Rosa & Langarita, Raquel & Sánchez-Chóliz, Julio, 2017. "The electricity industry in Spain: A structural analysis using a disaggregated input-output model," Energy, Elsevier, vol. 141(C), pages 2640-2651.
    339. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    340. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    341. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    342. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    343. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    344. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    345. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    346. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    347. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    348. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.
    349. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    350. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    351. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    352. Yawen Han & Shigemi Kagawa & Fumiya Nagashima & Keisuke Nansai, 2019. "Sources of China’s Fossil Energy-Use Change," Energies, MDPI, vol. 12(4), pages 1-16, February.
    353. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    354. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
    355. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.
    356. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    357. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    358. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    359. Feng Dong & Xinqi Gao & Jingyun Li & Yuanqing Zhang & Yajie Liu, 2018. "Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches," IJERPH, MDPI, vol. 15(12), pages 1-28, December.
    360. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    361. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    362. Rina Wu & Jiquan Zhang & Yuhai Bao & Feng Zhang, 2016. "Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
    363. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    364. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
    365. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    366. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).

  100. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.

    Cited by:

    1. Llop Llop, Maria, 2018. "Decomposing the Changes in Water Intensity in a Mediterranean Region," Working Papers 2072/321558, Universitat Rovira i Virgili, Department of Economics.
    2. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    3. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2013. "The role of consumption patterns, demand and technological factors on the recent evolution of CO2 emissions in a group of advanced economies," Ecological Economics, Elsevier, vol. 96(C), pages 1-13.
    4. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    5. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    6. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    7. Fernando Bermejo & Raúl del Pozo & Pablo Moya, 2021. "Main Factors Determining the Economic Production Sustained by Public Long-Term Care Spending in Spain," IJERPH, MDPI, vol. 18(17), pages 1-18, August.
    8. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    9. Weihua Su & Yuying Wang & Dalia Streimikiene & Tomas Balezentis & Chonghui Zhang, 2020. "Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 657-669, July.
    10. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    11. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    12. Rao, Guangming & Liao, Jiao & Zhu, Yanping & Guo, Lin, 2022. "Decoupling of economic growth from CO2 emissions in Yangtze River Economic Belt sectors: A sectoral correlation effects perspective," Applied Energy, Elsevier, vol. 307(C).
    13. Xie, Shi-Chen, 2014. "The driving forces of China׳s energy use from 1992 to 2010: An empirical study of input–output and structural decomposition analysis," Energy Policy, Elsevier, vol. 73(C), pages 401-415.
    14. Kahrl, Fredrich & Roland-Holst, David & Zilberman, David, 2013. "Past as Prologue? Understanding energy use in post-2002 China," Energy Economics, Elsevier, vol. 36(C), pages 759-771.
    15. Li, DuoQi & Wang, DuanYi, 2016. "Decomposition analysis of energy consumption for an freeway during its operation period: A case study for Guangdong, China," Energy, Elsevier, vol. 97(C), pages 296-305.
    16. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    17. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    18. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    19. Wang, Qiang & Song, Xiaoxin, 2021. "Why do China and India burn 60% of the world’s coal? A decomposition analysis from a global perspective," Energy, Elsevier, vol. 227(C).
    20. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    21. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    22. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    23. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    24. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    25. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    26. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    27. Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
    28. Arunima Malik & Jun Lan, 2016. "The role of outsourcing in driving global carbon emissions," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 168-182, June.
    29. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    30. Oludolapo A Olanrewaju, 2018. "Energy consumption in South African industry: A decomposition analysis using the LMDI approach," Energy & Environment, , vol. 29(2), pages 232-244, March.
    31. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    32. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    33. Xinjie Jiang & Fengjun Xie, 2024. "Decomposition Analysis of Carbon Emission Drivers and Peaking Pathways for Key Sectors under China’s Dual Carbon Goals: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 16(13), pages 1-23, July.
    34. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    35. Wen, Le & Guang, Fengtao & Sharp, Basil, 2021. "Dynamics in Aotearoa New Zealand’s energy consumption between 2006/2007 and 2012/2013," Energy, Elsevier, vol. 225(C).
    36. Moreau, Vincent & Vuille, François, 2018. "Decoupling energy use and economic growth: Counter evidence from structural effects and embodied energy in trade," Applied Energy, Elsevier, vol. 215(C), pages 54-62.
    37. Beisheim, Benedikt & Krämer, Stefan & Engell, Sebastian, 2020. "Hierarchical aggregation of energy performance indicators in continuous production processes," Applied Energy, Elsevier, vol. 264(C).
    38. Wang, Zhaohua & Liu, Wei, 2015. "Determinants of CO2 emissions from household daily travel in Beijing, China: Individual travel characteristic perspectives," Applied Energy, Elsevier, vol. 158(C), pages 292-299.
    39. Marie Hyland & Jevgenijs Steinbuks, 2019. "Capital Adjustment and the Optimal Fuel Choice," The Energy Journal, , vol. 40(5), pages 73-96, September.
    40. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.
    41. Qiang Wang & Shasha Wang & Rongrong Li, 2019. "Determinants of Decoupling Economic Output from Carbon Emission in the Transport Sector: A Comparison Study of Four Municipalities in China," IJERPH, MDPI, vol. 16(19), pages 1-21, October.
    42. Jana, Sebak Kumar & Lise, Wietze, 2023. "Carbon Emissions from Energy Use in India: Decomposition Analysis," MPRA Paper 117245, University Library of Munich, Germany.
    43. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    44. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    45. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    46. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    47. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    48. Amira Ben Hammamia & Ahlem Dhakhlaoui, 2023. "Determinants and Prediction of CO2 Emissions in Tunisia: LMDI Decomposition Approach of an Error Correction Model," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 102-108, November.
    49. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    50. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    51. Christian Haas and Karol Kempa, 2018. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    52. Cohen, Gail & Jalles, Joao Tovar & Loungani, Prakash & Marto, Ricardo & Wang, Gewei, 2019. "Decoupling of emissions and GDP: Evidence from aggregate and provincial Chinese data," Energy Economics, Elsevier, vol. 77(C), pages 105-118.
    53. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    54. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    55. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    56. Hongkuan Zang & Lirong Zhang & Ye Xu & Wei Li, 2020. "Dynamic Input–Output Analysis of a Carbon Emission System at the Aggregated and Disaggregated Levels: A Case Study in the Northeast Industrial District," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    57. Nooraddin Sharify & Ramezan Hosseinzadeh, 2015. "Sources of Change in Energy Consumption in Iran: A Structural Decomposition Analysis," Iranian Economic Review (IER), Faculty of Economics,University of Tehran.Tehran,Iran, vol. 19(3), pages 325-339, Autumn.
    58. Zhang, Cheng & Zhou, Xinxin & Zhou, Bo & Zhao, Ziwei, 2022. "Impacts of a mega sporting event on local carbon emissions: A case of the 2014 Nanjing Youth Olympics," China Economic Review, Elsevier, vol. 73(C).
    59. Wang, Bing & Wang, Qian & Wei, Yi-Ming & Li, Zhi-Ping, 2018. "Role of renewable energy in China’s energy security and climate change mitigation: An index decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 187-194.
    60. Ana-Isabel Guerra & Ferran Sancho, 2013. "A Linear Price Model With Extractions," ERSA conference papers ersa13p281, European Regional Science Association.
    61. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    62. Yan Yan & Ancheng Pan & Chunyou Wu & Shusen Gui, 2019. "Factors Influencing Indirect Carbon Emission of Residential Consumption in China: A Case of Liaoning Province," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    63. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    64. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    65. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    66. Zhang, Ming & Song, Yan & Li, Peng & Li, Huanan, 2016. "Study on affecting factors of residential energy consumption in urban and rural Jiangsu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 330-337.
    67. Yong Yang & Junsong Jia & Adam T. Devlin & Yangming Zhou & Dongming Xie & Min Ju, 2020. "Decoupling and Decomposition Analysis of Residential Energy Consumption from Economic Growth during 2000–2017: A Comparative Study of Urban and Rural Guangdong, China," Energies, MDPI, vol. 13(17), pages 1-21, August.
    68. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    69. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2018. "China’s changing diet and its impacts on greenhouse gas emissions: an index decomposition analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    70. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    71. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    72. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    73. Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
    74. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    75. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    76. Tiziano Distefano & Giovanni Marin & Massimo Riccaboni, 2014. "Global Virtual Water Trade: Integrating Structural Decomposition Analysis with Network Theory," SEEDS Working Papers 2314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    77. Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    78. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    79. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    80. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    81. Fan, Maoqing & Zheng, Haitao, 2019. "The impact of factor price changes and technological progress on the energy intensity of China's industries: Kalman filter-based econometric method," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 340-353.
    82. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    83. Wang, Jianda & Yang, Senmiao & Dong, Kangyin & Nepal, Rabindra, 2024. "Assessing embodied carbon emission and its drivers in China's ICT sector: Multi-regional input-output and structural decomposition analysis," Energy Policy, Elsevier, vol. 186(C).
    84. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    85. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    86. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    87. Das, Aparna & Paul, Saikat Kumar, 2013. "Changes in energy requirements of the residential sector in India between 1993–94 and 2006–07," Energy Policy, Elsevier, vol. 53(C), pages 27-40.
    88. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    89. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    90. Hardt, Lukas & Owen, Anne & Brockway, Paul & Heun, Matthew K. & Barrett, John & Taylor, Peter G. & Foxon, Timothy J., 2018. "Untangling the drivers of energy reduction in the UK productive sectors: Efficiency or offshoring?," Applied Energy, Elsevier, vol. 223(C), pages 124-133.
    91. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    92. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    93. Wang, Hui & Li, Rupeng & Zhang, Ning & Zhou, Peng & Wang, Qiang, 2020. "Assessing the role of technology in global manufacturing energy intensity change: A production-theoretical decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    94. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    95. Löschel, Andreas & Rexhäuser, Sascha & Schymura, Michael, 2013. "Trade and the environment: An application of the WIOD database," ZEW Discussion Papers 13-005, ZEW - Leibniz Centre for European Economic Research.
    96. Alcántara, Vicent & Tarancón, Miguel-Angel & del Río, Pablo, 2013. "Assessing the technological responsibility of productive structures in electricity consumption," Energy Economics, Elsevier, vol. 40(C), pages 457-467.
    97. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    98. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    99. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    100. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    101. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    102. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    103. Yang Lianling & Yang Cuihong, 2017. "Changes in domestic value added in China’s exports: a structural decomposition analysis approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-12, December.
    104. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    105. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    106. Xiao Liu & Yancai Zhang & Yingying Li, 2022. "How Does Energy Consumption and Economic Development Affect Carbon Emissions? A Multi-Process Decomposition Framework," Energies, MDPI, vol. 15(23), pages 1-16, November.
    107. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    108. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    109. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    110. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    111. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    112. Lyudmila Yurievna Bogachkova & Shamam Garnikovna Khurshudyan, 2015. "Quantitative Analysis of Energy Efficiency Indices in the Regions of the Russian Federation as Exemplified by Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1033-1041.
    113. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    114. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    115. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    116. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    117. Allegretti, G. & Montoya, M.A. & Bertussi, L.A.S. & Talamini, E., 2022. "When being renewable may not be enough: Typologies of trends in energy and carbon footprint towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    118. Zhao, Yuhuan & Liu, Ya & Qiao, Xiaoyong & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Li, Hao, 2018. "Tracing value added in gross exports of China: Comparison with the USA, Japan, Korea, and India based on generalized LMDI," China Economic Review, Elsevier, vol. 49(C), pages 24-44.
    119. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    120. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    121. Vadim V. Krivirotov & Aleksey V. Kalina & Anastasiya I. Savelyeva, 2018. "Energy Efficiency Assessment of Copper Producers: Theory and Practice," Journal of New Economy, Ural State University of Economics, vol. 19(5), pages 107-116, October.
    122. Wang, Jing & Rickman, Dan S. & Yu, Yihua, 2022. "Dynamics between global value chain participation, CO2 emissions, and economic growth: Evidence from a panel vector autoregression model," Energy Economics, Elsevier, vol. 109(C).
    123. Jinpeng Liu & Delin Wei, 2020. "Analysis and Measurement of Carbon Emission Aggregation and Spillover Effects in China: Based on a Sectoral Perspective," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    124. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    125. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    126. Shinichiro Nakamura, 2020. "3EID and Waste IO: the state of environmentally extended Input-Output Analysis in Japan," Working Papers 2010, Waseda University, Faculty of Political Science and Economics.
    127. Moreau, Vincent & Neves, Catarina Amarante De Oliveira & Vuille, François, 2019. "Is decoupling a red herring? The role of structural effects and energy policies in Europe," Energy Policy, Elsevier, vol. 128(C), pages 243-252.
    128. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    129. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    130. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    131. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    132. De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," ZEW Discussion Papers 13-052, ZEW - Leibniz Centre for European Economic Research.
    133. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    134. Shang, Wen-Long & Ling, Yantao & Ochieng, Washington & Yang, Linchuan & Gao, Xing & Ren, Qingzhong & Chen, Yilin & Cao, Mengqiu, 2024. "Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality," Applied Energy, Elsevier, vol. 365(C).
    135. Wankeun Oh & Jonghyun Yoo, 2020. "Long-Term Increases and Recent Slowdowns of CO 2 Emissions in Korea," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    136. Chen, Lei & Li, Ke & Chen, Shuying & Wang, Xiaofei & Tang, Liwei, 2021. "Industrial activity, energy structure, and environmental pollution in China," Energy Economics, Elsevier, vol. 104(C).
    137. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    138. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    139. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    140. Chen, Zhenni & Zhang, Zengkai & Feng, Tong & Liu, Diyi, 2023. "What drives the temporal dynamics and spatial differences of urban and rural household emissions in China?," Energy Economics, Elsevier, vol. 125(C).
    141. Wang, Enci & Su, Bin & Zhong, Sheng & Guo, Qinxin, 2022. "China's Embodied SO2 Emissions and Aggregate Embodied SO2 Intensities in Interprovincial and International Trade," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    142. Peggy Hariwan & Bambang Juanda & Sri Mulatsih & Himawan Hariyoga, 2021. "Analysis of Energy Efficiency on the Manufacturing Industry in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 28-36.
    143. Sun, Xiaohua & Dong, Yan & Wang, Yun & Ren, Junlin, 2022. "Sources of greenhouse gas emission reductions in OECD countries: Composition or technique effects," Ecological Economics, Elsevier, vol. 193(C).
    144. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    145. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    146. Torrie, Ralph D. & Stone, Christopher & Layzell, David B., 2016. "Understanding energy systems change in Canada: 1. Decomposition of total energy intensity," Energy Economics, Elsevier, vol. 56(C), pages 101-106.
    147. Liu, Qilu & Cheng, Kaiming & Zhuang, Yanjie, 2022. "Estimation of city energy consumption in China based on downscaling energy balance tables," Energy, Elsevier, vol. 256(C).
    148. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    149. Peng Qi & Jianlei Lang & Xiaoqi Wang & Ying Zhou & Haoyun Qi & Shuiyuan Cheng, 2024. "The Coordinated Effects of CO 2 and Air Pollutant Emission Changes Induced by Inter-Provincial Trade in China," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    150. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    151. Ming Cao & Wei Kang & Qingren Cao & M. Jawad Sajid, 2020. "Estimating Chinese rural and urban residents’ carbon consumption and its drivers: considering capital formation as a productive input," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5443-5464, August.
    152. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    153. Qiumeng Zhong & Hui Li & Sai Liang & Jetashree & Xiaohui Wu & Jianchuan Qi & Shuxiao Wang, 2022. "Changes of production and consumption structures in coastal regions lead to mercury emission control in China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1760-1770, October.
    154. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    155. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    156. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
    157. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    158. Liu, Xiaoqian & Cifuentes-Faura, Javier & Zhao, Shikuan & Wang, Long, 2023. "Government environmental attention and carbon emissions governance: Firm-level evidence from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 121-142.
    159. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    160. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    161. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    162. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    163. Zhang, Pengfei & Cai, Wenqiu & Yao, Mingtao & Wang, Zhiyou & Yang, Luzhen & Wei, Wendong, 2020. "Urban carbon emissions associated with electricity consumption in Beijing and the driving factors," Applied Energy, Elsevier, vol. 275(C).
    164. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    165. Changjian Wang & Fei Wang & Hongou Zhang & Yuyao Ye & Qitao Wu & Yongxian Su, 2014. "Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province," Sustainability, MDPI, vol. 6(11), pages 1-16, November.
    166. Mundaca, Luis & Markandya, Anil, 2016. "Assessing regional progress towards a ‘Green Energy Economy’," Applied Energy, Elsevier, vol. 179(C), pages 1372-1394.
    167. Feng Xu & Nan Xiang & Jingjing Yan & Lujun Chen & Peter Nijkamp & Yoshiro Higano, 2015. "Dynamic simulation of China’s carbon emission reduction potential by 2020," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 15-27, March.
    168. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    169. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    170. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    171. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    172. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    173. Li, Ying & Beeton, R.J.S. & Halog, Anthony & Sigler, Thomas, 2016. "Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China," Resources, Conservation & Recycling, Elsevier, vol. 110(C), pages 87-98.
    174. PU, Zhengning & YUE, Shujing & GAO, Peng, 2020. "The driving factors of China's embodied carbon emissions," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    175. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    176. Yu, Miao & Meng, Bo & Li, Rong, 2022. "Analysis of China's urban household indirect carbon emissions drivers under the background of population aging," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 114-125.
    177. Ming Zhang & Peng Li, 2015. "Analyzing the impact of urbanization on energy consumption in Jiangsu Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 177-190, March.
    178. Gobong Choi & Taeyoon Kim & Minchul Kim, 2021. "LMDI Decomposition Analysis of E-Waste Generation in the ASEAN," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    179. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    180. Lingying Pan & Zheng Guo & Pei Liu & Linwei Ma & Zheng Li, 2013. "Comparison and Analysis of Macro Energy Scenarios in China and a Decomposition-Based Approach to Quantifying the Impacts of Economic and Social Development," Energies, MDPI, vol. 6(7), pages 1-22, July.
    181. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    182. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    183. Tolga Kaya, 2017. "Unraveling the Energy use Network of Construction Sector in Turkey using Structural Path Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 31-43.
    184. Li, Meng & Gao, Yuning & Liu, Shenglong, 2020. "China’s energy intensity change in 1997–2015: Non-vertical adjusted structural decomposition analysis based on input-output tables," Structural Change and Economic Dynamics, Elsevier, vol. 53(C), pages 222-236.
    185. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    186. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    187. Rui Song & Jing Liu & Kunyu Niu, 2023. "Agricultural Carbon Emissions Embodied in China’s Foreign Trade and Its Driving Factors," Sustainability, MDPI, vol. 15(1), pages 1-18, January.
    188. Wu, Feng & Huang, Ningyu & Zhang, Qian & Qiao, Zhi & Zhan, Ni-ni, 2020. "Multi-province comparison and typology of China’s CO2 emission: A spatial–temporal decomposition approach," Energy, Elsevier, vol. 190(C).
    189. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    190. Marcucci, Adriana & Fragkos, Panagiotis, 2015. "Drivers of regional decarbonization through 2100: A multi-model decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 111-124.
    191. Hu, Yi & Yin, Zhifeng & Ma, Jian & Du, Wencui & Liu, Danhe & Sun, Luxi, 2017. "Determinants of GHG emissions for a municipal economy: Structural decomposition analysis of Chongqing," Applied Energy, Elsevier, vol. 196(C), pages 162-169.
    192. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    193. Changfeng Shi & Yue Yu & Chenjun Zhang & Qiyong Chen, 2024. "What drives carbon emissions reduction in Beijing? An empirical study based on SDA and SPD," Energy & Environment, , vol. 35(4), pages 1729-1752, June.
    194. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    195. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
    196. Meng, Bo & Xue, Jinjun, 2016. "Spatial spillover effects in determining China's regional CO2 emission growth : 2007-2010," IDE Discussion Papers 576, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    197. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    198. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
    199. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    200. Xin Long Xu & Sen Qiao & Hsing Hung Chen, 2020. "Exploring the efficiency of new energy generation: Evidence from OECD and non-OECD countries," Energy & Environment, , vol. 31(3), pages 389-404, May.
    201. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    202. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How digital industries affect China's carbon emissions? Analysis of the direct and indirect structural effects," Technology in Society, Elsevier, vol. 68(C).
    203. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    204. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.
    205. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    206. Yan, Yunfeng & Li, Xiyuan & Wang, Ran & Zhao, Zhongxiu & Jiao, Aodong, 2023. "Decomposing the carbon footprints of multinational enterprises along global value chains," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 13-28.
    207. Li, Jin & Hu, Shanying, 2017. "History and future of the coal and coal chemical industry in China," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 13-24.
    208. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    209. Duarte, Rosa & Miranda-Buetas, Sara & Sarasa, Cristina, 2021. "Household consumption patterns and income inequality in EU countries: Scenario analysis for a fair transition towards low-carbon economies," Energy Economics, Elsevier, vol. 104(C).
    210. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    211. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    212. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    213. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    214. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    215. Lin, Gang & Jiang, Dong & Fu, Jingying & Wang, Di & Li, Xiang, 2019. "A spatial shift-share decomposition of energy consumption changes in China," Energy Policy, Elsevier, vol. 135(C).
    216. Deichmann, Uwe & Reuter, Anna & Vollmer, Sebastian & Zhang, Fan, 2019. "The relationship between energy intensity and economic growth: New evidence from a multi-country multi-sectorial dataset," World Development, Elsevier, vol. 124(C), pages 1-1.
    217. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    218. Rui Jiang & Rongrong Li & Qiuhong Wu, 2019. "Investigation for the Decomposition of Carbon Emissions in the USA with C-D Function and LMDI Methods," Sustainability, MDPI, vol. 11(2), pages 1-15, January.
    219. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    220. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    221. Zeballos, Eliana & Sinclair, Wilson & Park, Timothy, 2021. "Understanding the Components of U.S. Food Expenditures During Recessionary and Non-Recessionary Periods," USDA Miscellaneous 316348, United States Department of Agriculture.
    222. Zhang, Chuanguo & Yu, Xiaoxue & Zhou, Juncen, 2024. "China's embodied oil outflow in GVC participation: Patterns and drivers," Resources Policy, Elsevier, vol. 91(C).
    223. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    224. Wei, Wei & Mushtaq, Zulqarnain & Sharif, Maimoona & Zeng, Xiaowu & Wan-Li, Zhang & Qaisrani, Mumtaz A., 2020. "Evaluating the coal rebound effect in energy intensive industries of China," Energy, Elsevier, vol. 207(C).
    225. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    226. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    227. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    228. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    229. Sun, Xudong & Cheng, Xuelei & Guan, Chenghe & Wu, Xiaofang & Zhang, Bo, 2022. "Economic drivers of global and regional CH4 emission growth from the consumption perspective," Energy Policy, Elsevier, vol. 170(C).
    230. Zheng, Jiali & Feng, Gengzhong & Ren, Zhuanzhuan & Qi, Nengxi & Coffman, D'Maris & Zhou, Yunlai & Wang, Shouyang, 2022. "China's energy consumption and economic activity at the regional level," Energy, Elsevier, vol. 259(C).
    231. Bingquan Liu & Yue Wang & Xuran Chang & Boyang Nie & Lingqi Meng & Yongqing Li, 2022. "Does Land Urbanization Affect the Catch-Up Effect of Carbon Emissions Reduction in China’s Logistics?," Land, MDPI, vol. 11(9), pages 1-18, September.
    232. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    233. Shen Yilin & Guo Ying & Guo Yuanyuan & Wu Lanzhen & Shen Yanjun, 2024. "Evaluating water resources sustainability of water-scarcity basin from a scope of WEF-Nexus decomposition: the case of Yellow River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29583-29603, November.
    234. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    235. Yagi, Michiyuki & Managi, Shunsuke, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," MPRA Paper 87891, University Library of Munich, Germany.
    236. Mengru Song & Yanjun Wang & Cheng Wang & Walter Musakwa & Yiye Ji, 2024. "Spatial and Temporal Characteristics of Carbon Emissions from Construction Industry in China from 2010 to 2019," Sustainability, MDPI, vol. 16(14), pages 1-25, July.
    237. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    238. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    239. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    240. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    241. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    242. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    243. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    244. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    245. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    246. Román-Collado, Rocío & Colinet, Maria José, 2018. "Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches," Energy Policy, Elsevier, vol. 115(C), pages 409-417.
    247. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    248. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    249. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    250. Sumabat, Ana Karmela & Lopez, Neil Stephen & Yu, Krista Danielle & Hao, Han & Li, Richard & Geng, Yong & Chiu, Anthony S.F., 2016. "Decomposition analysis of Philippine CO2 emissions from fuel combustion and electricity generation," Applied Energy, Elsevier, vol. 164(C), pages 795-804.
    251. Işıl Şirin SELÇUK, 2018. "Türkiye Sanayi Sektörü Enerji Verimliliği: Genişletilmiş Logaritmik Ortalama Divisia Endeks Ayrıştırma Yöntemi Uygulaması," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(37).
    252. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    253. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    254. Su, Bin & Ang, B.W., 2023. "Structural decomposition analysis applied to energy and emissions: Frameworks for monthly data," Energy Economics, Elsevier, vol. 126(C).
    255. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    256. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    257. López, Xesús Pereira & de la Torre Cuevas, Fernando, 2023. "An alternative for tracing the path between supply and use tables in current and constant prices," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 293-302.
    258. Kerong Zhang & Liangyu Jiang & Wuyi Liu, 2024. "Toward the Construction of a Sustainable Society: Assessing the Temporal Variations and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    259. Hua Liao & Celio Andrade & Julio Lumbreras & Jing Tian, 2018. "CO2 Emissions in Beijing: Sectoral Linkages and Demand Drivers," CEEP-BIT Working Papers 113, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    260. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    261. Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
    262. Chong, Chin Hao & Tan, Wei Xin & Ting, Zhao Jia & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou, 2019. "The driving factors of energy-related CO2 emission growth in Malaysia: The LMDI decomposition method based on energy allocation analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    263. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    264. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    265. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    266. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    267. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    268. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    269. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    270. Sun, Chen & Song, Junnian & Zhang, Dongqi & Wang, Xiaofan & Yang, Wei & Qi, Zhimin & Chen, Shaoqing, 2023. "Tracing urban carbon footprints differentiating supply chain complexity: A metropolis case," Energy, Elsevier, vol. 282(C).
    271. Guevara, Zeus & Henriques, SofiaTeives & Sousa, Tânia, 2021. "Driving factors of differences in primary energy intensities of 14 European countries," Energy Policy, Elsevier, vol. 149(C).
    272. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    273. Wenbin Shao & Fangyi Li & Zhaoyang Ye & Zhipeng Tang & Wu Xie & Yu Bai & Shanlin Yang, 2019. "Inter-Regional Spillover of Carbon Emissions and Employment in China: Is It Positive or Negative?," Sustainability, MDPI, vol. 11(13), pages 1-14, July.
    274. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    275. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).
    276. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    277. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    278. Darío Serrano-Puente, 2021. "Are we moving towards an energy-efficient low-carbon economy? An input-output LMDI decomposition of CO2 emissions for Spain and the EU28," Working Papers 2104, Banco de España.
    279. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    280. Avelino, André F.T. & Franco-Solís, Alberto & Carrascal-Incera, André, 2021. "Revisiting the Temporal Leontief Inverse: New Insights on the Analysis of Regional Technological Economic Change," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 79-89.
    281. Bagheri, Mehdi & Guevara, Zeus & Alikarami, Mohammad & Kennedy, Christopher A. & Doluweera, Ganesh, 2018. "Green growth planning: A multi-factor energy input-output analysis of the Canadian economy," Energy Economics, Elsevier, vol. 74(C), pages 708-720.
    282. Kempa, Karol & Haas, Christian, 2016. "Directed Technical Change and Energy Intensity Dynamics: Structural Change vs. Energy Efficiency," VfS Annual Conference 2016 (Augsburg): Demographic Change 145722, Verein für Socialpolitik / German Economic Association.
    283. Schymura, Michael & Voigt, Sebastian, 2014. "What drives changes in carbon emissions? An index decomposition approach for 40 countries," ZEW Discussion Papers 14-038, ZEW - Leibniz Centre for European Economic Research.
    284. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
    285. Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
    286. Nadezda Pakhomova & Kurt Knut Richter & Viacheslav Zhigalov & Aleksandra Malova, 2017. "Management of Energy-Efficiency in the Context of New Climate Policy," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(1), pages 183-195.
    287. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    288. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    289. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    290. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    291. Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
    292. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    293. Franco Solís, Alberto & F.T. Avelino, André & Carrascal-Incera, André, 2020. "The evolution of household-induced value chains and their environmental implications," Ecological Economics, Elsevier, vol. 174(C).
    294. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
    295. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    296. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    297. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    298. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
    299. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
    300. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    301. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    302. Lei Qiu & Jingyi Huang & Wenjuan Niu, 2018. "Decoupling and Driving Factors of Economic Growth and Groundwater Consumption in the Coastal Areas of the Yellow Sea and the Bohai Sea," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    303. Azam, Muhammad & Younes, Ben Zaied & Hunjra, Ahmed Imran & Hussain, Nazim, 2022. "Integrated Spatial-Temporal decomposition analysis for life cycle assessment of carbon emission intensity change in various regions of China," Resources Policy, Elsevier, vol. 79(C).
    304. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    305. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    306. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    307. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    308. Kirill Muradov, 2021. "Structural decomposition analysis with disaggregate factors within the Leontief inverse," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 10(1), pages 1-17, December.
    309. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).
    310. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    311. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    312. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    313. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    314. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    315. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    316. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    317. Román, Rocío & Cansino, José M. & Rodas, José A., 2018. "Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications," Renewable Energy, Elsevier, vol. 116(PA), pages 402-411.
    318. Wei Shi & Zhiquan Sha & Fuwei Qiao & Wenwen Tang & Chuyu Luo & Yali Zheng & Chunli Wang & Jun Ge, 2023. "Study on the Temporal and Spatial Evolution of China’s Carbon Dioxide Emissions and Its Emission Reduction Path," Energies, MDPI, vol. 16(2), pages 1-16, January.
    319. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
    320. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    321. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    322. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    323. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    324. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    325. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    326. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    327. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    328. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    329. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Zhang, Qiang & Zhao, Hongyan & Bi, Jun, 2015. "A dual strategy for controlling energy consumption and air pollution in China's metropolis of Beijing," Energy, Elsevier, vol. 81(C), pages 294-303.
    330. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    331. Dong, Bai & Zhang, Ming & Mu, Hailin & Su, Xuanming, 2016. "Study on decoupling analysis between energy consumption and economic growth in Liaoning Province," Energy Policy, Elsevier, vol. 97(C), pages 414-420.
    332. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    333. Wu, Libo & Zhou, Ying & Qian, Haoqi, 2022. "Global actions under the Paris agreement: Tracing the carbon leakage flow and pursuing countermeasures," Energy Economics, Elsevier, vol. 106(C).
    334. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    335. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    336. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    337. Zhong, Sheng, 2018. "Structural decompositions of energy consumption between 1995 and 2009: Evidence from WIOD," Energy Policy, Elsevier, vol. 122(C), pages 655-667.
    338. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    339. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    340. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    341. Yu, Yadong & Ren, Hongtao & Kharrazi, Ali & Ma, Tieju & Zhu, Bing, 2015. "Exploring socioeconomic drivers of environmental pressure on the city level: The case study of Chongqing in China," Ecological Economics, Elsevier, vol. 118(C), pages 123-131.
    342. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    343. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
    344. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    345. Yawen Han & Shigemi Kagawa & Fumiya Nagashima & Keisuke Nansai, 2019. "Sources of China’s Fossil Energy-Use Change," Energies, MDPI, vol. 12(4), pages 1-16, February.
    346. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    347. Dietzenbacher, Erik & Kulionis, Viktoras & Capurro, Filippo, 2020. "Measuring the effects of energy transition: A structural decomposition analysis of the change in renewable energy use between 2000 and 2014," Applied Energy, Elsevier, vol. 258(C).
    348. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.
    349. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    350. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    351. María T. Álvarez-Martínez & Alfredo J. Mainar-Causapé, 2021. "The GHG Emissions Generating Capacity by Productive Sectors in the EU: A SAM Analysis," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    352. Feng Dong & Xinqi Gao & Jingyun Li & Yuanqing Zhang & Yajie Liu, 2018. "Drivers of China’s Industrial Carbon Emissions: Evidence from Joint PDA and LMDI Approaches," IJERPH, MDPI, vol. 15(12), pages 1-28, December.
    353. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    354. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    355. Rina Wu & Jiquan Zhang & Yuhai Bao & Feng Zhang, 2016. "Geographical Detector Model for Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia, China," Sustainability, MDPI, vol. 8(2), pages 1-12, February.
    356. Geng, Zhiqiang & Yang, Xiao & Han, Yongming & Zhu, Qunxiong, 2017. "Energy optimization and analysis modeling based on extreme learning machine integrated index decomposition analysis: Application to complex chemical processes," Energy, Elsevier, vol. 120(C), pages 67-78.
    357. Matthias Pfaff & Rainer Walz, 2021. "Analysis of the development and structural drivers of raw‐material use in Germany," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 1063-1075, August.
    358. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    359. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).

  101. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.

    Cited by:

    1. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    2. Qian Wang & Qiao-Mei Liang & Bing Wang & Fang-Xun Zhong, 2016. "Impact of household expenditures on CO2 emissions in China: Income-determined or lifestyle-driven?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 353-379, November.
    3. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    4. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    5. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    6. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    7. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    8. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    9. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    10. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    11. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    12. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    13. Piñero, Pablo & Pérez-Neira, David & Infante-Amate, Juan & Chas-Amil, María L. & Doldán-García, Xoán R., 2020. "Unequal raw material exchange between and within countries: Galicia (NW Spain) as a core-periphery economy," Ecological Economics, Elsevier, vol. 172(C).
    14. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    15. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    16. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    17. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    18. Jayanthakumaran, Kankesu & Liu, Ying, 2016. "Bi-lateral CO2 emissions embodied in Australia–China trade," Energy Policy, Elsevier, vol. 92(C), pages 205-213.
    19. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    20. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    21. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    22. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    23. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    24. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    25. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    26. Wang, H. & Ang, B.W. & Su, Bin, 2017. "A Multi-region Structural Decomposition Analysis of Global CO2 Emission Intensity," Ecological Economics, Elsevier, vol. 142(C), pages 163-176.
    27. Nian, Victor & Chou, S.K. & Su, Bin & Bauly, John, 2014. "Life cycle analysis on carbon emissions from power generation – The nuclear energy example," Applied Energy, Elsevier, vol. 118(C), pages 68-82.
    28. Vinicius A. Vale & Fernando S. Perobelli & Ariaster B. Chimeli, 2018. "International trade, pollution, and economic structure: evidence on CO2 emissions for the North and the South," Economic Systems Research, Taylor & Francis Journals, vol. 30(1), pages 1-17, January.
    29. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    30. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    31. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    32. Peiqi Xu & Ling Shao & Zihao Geng & Manli Guo & Zijun Wei & Zi Wu, 2019. "Consumption-Based Carbon Emissions of Tianjin Based on Multi-Scale Input–Output Analysis," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    33. Zengkai Zhang & ZhongXiang Zhang & Kunfu Zhu, 2019. "Allocating carbon responsibility: the role of spatial production fragmentation," CCEP Working Papers 1901, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    34. Cho, Cheol-Joo, 2013. "An exploration of reliable methods of estimating emergy requirements at the regional scale: Traditional emergy analysis, regional thermodynamic input–output analysis, or the conservation rule-implicit," Ecological Modelling, Elsevier, vol. 251(C), pages 288-296.
    35. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    36. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    37. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    38. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    39. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    40. Zhou, Bo & Zhang, Cheng & Wang, Qunwei & Zhou, Dequn, 2020. "Does emission trading lead to carbon leakage in China? Direction and channel identifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    41. Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
    42. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    43. López, Luis Antonio & Arce, Guadalupe & Zafrilla, Jorge Enrique, 2013. "Parcelling virtual carbon in the pollution haven hypothesis," Energy Economics, Elsevier, vol. 39(C), pages 177-186.
    44. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    45. Wang, H. & Ang, B.W., 2018. "Assessing the role of international trade in global CO2 emissions: An index decomposition analysis approach," Applied Energy, Elsevier, vol. 218(C), pages 146-158.
    46. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    47. Chen, B. & Yang, Q. & Li, J.S. & Chen, G.Q., 2017. "Decoupling analysis on energy consumption, embodied GHG emissions and economic growth — The case study of Macao," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 662-672.
    48. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    49. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    50. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    51. Liddle, Brantley, 2018. "Consumption-based accounting and the trade-carbon emissions nexus," Energy Economics, Elsevier, vol. 69(C), pages 71-78.
    52. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    53. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    54. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    55. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    56. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    57. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    58. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    59. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    60. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "The effects of border-crossing frequencies associated with carbon footprints on border carbon adjustments," Energy Economics, Elsevier, vol. 65(C), pages 105-114.
    61. Ji Guo & Lei Zhou & Xianhua Wu, 2018. "Tendency of Embodied Carbon Change in the Export Trade of Chinese Manufacturing Industry from 2000 to 2015 and Its Driving Factors," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    62. Gao, Cuixia & Tao, Simin & He, Yuyang & Su, Bin & Sun, Mei & Mensah, Isaac Adjei, 2021. "Effect of population migration on spatial carbon emission transfers in China," Energy Policy, Elsevier, vol. 156(C).
    63. Arne Geschke & Richard Wood & Keiichiro Kanemoto & Manfred Lenzen & Daniel Moran, 2014. "Investigating Alternative Approaches To Harmonise Multi-Regional Input-Output Data," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 354-385, September.
    64. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    65. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    66. Liu, Liyun & Zhao, Zhenzhi & Su, Bin & Ng, Tsan Sheng & Zhang, Mingming & Qi, Lin, 2021. "Structural breakpoints in the relationship between outward foreign direct investment and green innovation: An empirical study in China," Energy Economics, Elsevier, vol. 103(C).
    67. Zhang, Youguo, 2017. "Interregional carbon emission spillover–feedback effects in China," Energy Policy, Elsevier, vol. 100(C), pages 138-148.
    68. Jing-Li Fan & Jian-Da Wang & Ling-Si Kong & Xian Zhang, 2018. "The carbon footprints of secondary industry in China: an input–output subsystem analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 635-657, March.
    69. Gavrilova, Olga & Vilu, Raivo, 2012. "Production-based and consumption-based national greenhouse gas inventories: An implication for Estonia," Ecological Economics, Elsevier, vol. 75(C), pages 161-173.
    70. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    71. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
    72. Cho, Cheol-Joo, 2017. "The displacement and attraction effects in interurban migration: An application of the input-output scheme to the case of large cities in Korea," Economics Discussion Papers 2017-49, Kiel Institute for the World Economy (IfW Kiel).
    73. Grebel, Thomas & Stützer, Michael, 2014. "Assessment of the environmental performance of European countries over time: Addressing the role of carbon leakage and nuclear waste," Ilmenau Economics Discussion Papers 90, Ilmenau University of Technology, Institute of Economics.
    74. Li, Y.L. & Chen, B. & Chen, G.Q., 2020. "Carbon network embodied in international trade: Global structural evolution and its policy implications," Energy Policy, Elsevier, vol. 139(C).
    75. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    76. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    77. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    78. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    79. Chapa, Joana & Ortega, Araceli, 2017. "Identifying the main emitters of carbon dioxide in Mexico: a multi-sectoral study," LSE Research Online Documents on Economics 123241, London School of Economics and Political Science, LSE Library.
    80. Simola, Heli, 2020. "CO₂ emissions embodied in EU-China trade and carbon border tax," BOFIT Policy Briefs 4/2020, Bank of Finland Institute for Emerging Economies (BOFIT).
    81. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    82. Lin, Yongsheng & Dong, Zhanfeng & Zhang, Wei & Zhang, Hongyu, 2020. "Estimating inter-regional payments for ecosystem services: Taking China’s Beijing-Tianjin-Hebei region as an example," Ecological Economics, Elsevier, vol. 168(C).

  102. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.

    Cited by:

    1. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    2. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    3. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    4. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    5. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    6. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    7. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Ina Meyer & Kurt Kratena, 2010. "CO2 Emissions Embodied in Austrian International Trade," FIW Research Reports series II-002, FIW.
    9. Jing Li & Hong Fang & Siran Fang & Zhiming Zhang & Pengyuan Zhang, 2021. "Embodied Energy Use in China’s Transportation Sector: A Multi-Regional Input–Output Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    10. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    11. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    12. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    13. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    14. Carvalho, Terciane Sabadini & Santiago, Flaviane Souza & Perobelli, Fernando Salgueiro, 2013. "International trade and emissions: The case of the Minas Gerais state — 2005," Energy Economics, Elsevier, vol. 40(C), pages 383-395.
    15. Stephen Chong & Rutger Hoekstra & Oscar Lemmers & Ilke Van Beveren & Marcel Van Den Berg & Ron Van Der Wal & Piet Verbiest, 2019. "The role of small- and medium-sized enterprises in the Dutch economy: an analysis using an extended supply and use table," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-24, December.
    16. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    17. Viktoras Kulionis, 2018. "Constructing energy accounts for WIOD 2016 release," Papers 1810.07112, arXiv.org.
    18. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    19. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    20. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    21. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    22. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    23. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    24. Bram Edens & Rutger Hoekstra & Daan Zult & Oscar Lemmers & Harry Wilting & Ronghao Wu, 2015. "A Method To Create Carbon Footprint Estimates Consistent With National Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 440-457, December.
    25. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    26. Kjartan Steen-Olsen & Anne Owen & Edgar G. Hertwich & Manfred Lenzen, 2014. "Effects Of Sector Aggregation On Co 2 Multipliers In Multiregional Input-Output Analyses," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 284-302, September.
    27. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    28. Xu, Duo & Liu, Gengyuan & Meng, Fanxin & Yan, Ningyu & Li, Hui & Agostinho, Feni & Almeida, Cecilia MVB & Giannetti, Biagio F, 2023. "Sector aggregation effect on embodied carbon emission based on city-centric global multi-region input-output (CCG-MRIO) model," Ecological Modelling, Elsevier, vol. 484(C).
    29. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    30. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    31. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    32. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    33. Zhang, Da & Caron, Justin & Winchester, Niven & Karplus, Valerie J., 2013. "Sectoral aggregation bias in the accounting of emissions embodied in trade and consumption," Conference papers 332330, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    34. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    35. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    36. Jiang, Lei & He, Shixiong & Tian, Xi & Zhang, Bo & Zhou, Haifeng, 2020. "Energy use embodied in international trade of 39 countries: Spatial transfer patterns and driving factors," Energy, Elsevier, vol. 195(C).
    37. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    38. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    39. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    40. Moran, Daniel D. & Lenzen, Manfred & Kanemoto, Keiichiro & Geschke, Arne, 2013. "Does ecologically unequal exchange occur?," Ecological Economics, Elsevier, vol. 89(C), pages 177-186.
    41. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    42. Jayanthakumaran, Kankesu & Liu, Ying, 2016. "Bi-lateral CO2 emissions embodied in Australia–China trade," Energy Policy, Elsevier, vol. 92(C), pages 205-213.
    43. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    44. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    45. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    46. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    47. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    48. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    49. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    50. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    51. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    52. Weitzel, Matthias & Ma, Tao, 2014. "Emissions embodied in Chinese exports taking into account the special export structure of China," Energy Economics, Elsevier, vol. 45(C), pages 45-52.
    53. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    54. Moana S. Simas & Laura Golsteijn & Mark A. J. Huijbregts & Richard Wood & Edgar G. Hertwich, 2014. "The “Bad Labor” Footprint: Quantifying the Social Impacts of Globalization," Sustainability, MDPI, vol. 6(11), pages 1-27, October.
    55. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    56. Zhang, Moyi & Huang, Xian-Jin, 2012. "Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China," Energy, Elsevier, vol. 44(1), pages 515-526.
    57. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    58. de Koning, Arjan & Bruckner, Martin & Lutter, Stephan & Wood, Richard & Stadler, Konstantin & Tukker, Arnold, 2015. "Effect of aggregation and disaggregation on embodied material use of products in input–output analysis," Ecological Economics, Elsevier, vol. 116(C), pages 289-299.
    59. Wang, Zhaohua & Li, Yiming & Cai, Hailin & Yang, Yuantao & Wang, Bo, 2019. "Regional difference and drivers in China's carbon emissions embodied in internal trade," Energy Economics, Elsevier, vol. 83(C), pages 217-228.
    60. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    61. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    62. Jiajia Li & Yucong Liu & Houjian Li & Abbas Ali Chandio, 2021. "Heterogeneous Driving Factors of Carbon Emissions Embedded in China’s Export: An Application of the LASSO Model," IJERPH, MDPI, vol. 18(19), pages 1-18, October.
    63. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    64. Zengkai Zhang & ZhongXiang Zhang & Kunfu Zhu, 2019. "Allocating carbon responsibility: the role of spatial production fragmentation," CCEP Working Papers 1901, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    65. Banerjee, Suvajit, 2021. "Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India's National Emission Inventory: A recursive dynamic CGE analysis," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 68-86.
    66. Li, Meng & Gao, Yuning & Meng, Bo & Meng, Jing, 2023. "Tracing embodied energy use through global value chains: Channel decomposition and analysis of influential factors," Ecological Economics, Elsevier, vol. 208(C).
    67. Feng Xu & Nan Xiang & Jingjing Yan & Lujun Chen & Peter Nijkamp & Yoshiro Higano, 2015. "Dynamic simulation of China’s carbon emission reduction potential by 2020," Letters in Spatial and Resource Sciences, Springer, vol. 8(1), pages 15-27, March.
    68. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    69. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    70. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    71. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    72. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    73. Sylvain Weber & Reyer Gerlagh & Nicole A. Mathys & Daniel Moran, 2019. "CO2 embedded in trade: trends and fossil fuel drivers," CESifo Working Paper Series 7562, CESifo.
    74. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    75. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    76. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.
    77. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    78. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    79. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    80. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    81. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    82. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    83. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    84. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    85. Xu, Xueliu & Mu, Mingjie & Wang, Qian, 2017. "Recalculating CO2 emissions from the perspective of value-added trade: An input-output analysis of China's trade data," Energy Policy, Elsevier, vol. 107(C), pages 158-166.
    86. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    87. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    88. Mizgajski Jan T., 2012. "The Impact of Polish-German Trade Flows on CO2 Emissions," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 152-164, January.
    89. Xie Zeqiong & He Junfei, 2022. "Decomposition and sector aggregation analysis of indirect household carbon emission indicators: a case study of Guangdong Province in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6903-6924, May.
    90. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    91. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    92. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    93. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    94. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    95. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    96. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    97. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    98. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    99. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
    100. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    101. Jan T. Mizgajski, 2013. "CO2 Embodied in Trade between Poland and Selected Countries," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 2(4), pages 48-60, September.
    102. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    103. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    104. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2012. "International trade and shared environmental responsibility by sector. An application to the Spanish economy," Ecological Economics, Elsevier, vol. 83(C), pages 221-235.
    105. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    106. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    107. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    108. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    109. Kyunsuk Choi & Hiroyuki Matsuura & Hyunjoung Lee & Il Sohn, 2016. "Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    110. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    111. Yue-Jun Zhang & Xiao-Juan Bian & Weiping Tan, 2018. "The linkages of sectoral carbon dioxide emission caused by household consumption in China: evidence from the hypothetical extraction method," Empirical Economics, Springer, vol. 54(4), pages 1743-1775, June.
    112. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    113. Marin, Giovanni & Mazzanti, Massimiliano & Montini, Anna, 2012. "Linking NAMEA and Input output for ‘consumption vs. production perspective’ analyses," Ecological Economics, Elsevier, vol. 74(C), pages 71-84.
    114. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Guo, Lin & Zhang, Kun & Xue, Jinjun & Liang, Qiao-Mei, 2019. "Distributional impact of carbon pricing in Chinese provinces," Energy Economics, Elsevier, vol. 81(C), pages 327-340.
    115. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    116. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    117. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
    118. Qian Zhang & Jun Nakatani & Yuichi Moriguchi, 2015. "Compilation of an Embodied CO 2 Emission Inventory for China Using 135-Sector Input-Output Tables," Sustainability, MDPI, vol. 7(7), pages 1-17, June.
    119. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    120. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    121. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    122. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
    123. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.
    124. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    125. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    126. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2023. "Carbon pricing, border adjustment and climate clubs: Options for international cooperation," Journal of International Economics, Elsevier, vol. 144(C).
    127. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    128. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    129. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    130. Li, Yingzhu & Shi, Xunpeng & Su, Bin, 2017. "Economic, social and environmental impacts of fuel subsidies: A revisit of Malaysia," Energy Policy, Elsevier, vol. 110(C), pages 51-61.
    131. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    132. Satoshi Nakano & Sonoe Arai & Ayu Washizu, 2017. "Economic impacts of Japan’s renewable energy sector and the feed-in tariff system: using an input–output table to analyze a next-generation energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 555-580, July.
    133. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
    134. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    135. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    136. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    137. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    138. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    139. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    140. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    141. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    142. Gavrilova, Olga & Vilu, Raivo, 2012. "Production-based and consumption-based national greenhouse gas inventories: An implication for Estonia," Ecological Economics, Elsevier, vol. 75(C), pages 161-173.
    143. Leying Wu & Zhangqi Zhong & Changxin Liu & Zheng Wang, 2017. "Examining PM 2.5 Emissions Embodied in China’s Supply Chain Using a Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    144. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
    145. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    146. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    147. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    148. Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
    149. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    150. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    151. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    152. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    153. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    154. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2022. "Carbon pricing, border adjustment and climate clubs: An assessment with EMuSe," Discussion Papers 25/2022, Deutsche Bundesbank.
    155. Natascha Hinterlang, 2023. "Effects of Carbon Pricing in Germany and Spain: An Assessment with EMuSe," Working Papers 2328, Banco de España.
    156. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    157. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    158. FæHn, Taran & Jacobsen, Karl & Bye, Brita, 2011. "Diffusion of Climate Technologies in Presence of an Emissions Cap," Conference papers 332131, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    159. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    160. Jordan Hristov & Aleksandra Martinovska-Stojcheska & Yves Surry, 2016. "The Economic Role of Water in FYR Macedonia: An Input–Output Analysis and Implications for the Western Balkan Countries," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-37, December.
    161. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    162. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    163. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    164. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    165. Fujimori, Shinichiro & Matsuoka, Yuzuru, 2011. "Development of method for estimation of world industrial energy consumption and its application," Energy Economics, Elsevier, vol. 33(3), pages 461-473, May.
    166. Wang, Saige & Cao, Tao & Chen, Bin, 2021. "Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China," Applied Energy, Elsevier, vol. 299(C).

  103. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.

    Cited by:

    1. Feng Dong & Ruyin Long & Hong Chen & Xiaohui Li & Qingliang Yang, 2013. "Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-10, December.
    2. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    3. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    4. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    5. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input-output analysis for China: a survey of the literature," Working Papers 200175, University of Western Australia, School of Agricultural and Resource Economics.
    6. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    7. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    8. Suvajit Banerjee, 2021. "Addressing the carbon emissions embodied in India’s bilateral trade with two eminent Annex-II parties: with input–output and spatial decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5430-5464, April.
    9. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).
    10. Li, Qiuping & Wu, Sanmang & Liu, Quanwen & Li, Shantong, 2024. "Role of global value chains in embodied domestic CO2 emissions of China's manufacturing exports: Normal and processing trade heterogeneity," Energy Economics, Elsevier, vol. 132(C).
    11. Zhang, Lulu & Yu, Chang & Cheng, Baodong & Yang, Chao & Chang, Yuan, 2020. "Mitigating climate change by global timber carbon stock: Accounting, flow and allocation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Rocco, Matteo V. & Guevara, Zeus & Heun, Matthew Kuperus, 2020. "Assessing energy and economic impacts of large-scale policy shocks based on Input-Output analysis: Application to Brexit," Applied Energy, Elsevier, vol. 274(C).
    13. Ina Meyer & Kurt Kratena, 2010. "CO2 Emissions Embodied in Austrian International Trade," FIW Research Reports series II-002, FIW.
    14. Jing Li & Hong Fang & Siran Fang & Zhiming Zhang & Pengyuan Zhang, 2021. "Embodied Energy Use in China’s Transportation Sector: A Multi-Regional Input–Output Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    15. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    16. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    17. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    18. Guevara, Zeus & Domingos, Tiago, 2017. "The multi-factor energy input–output model," Energy Economics, Elsevier, vol. 61(C), pages 261-269.
    19. Carvalho, Terciane Sabadini & Santiago, Flaviane Souza & Perobelli, Fernando Salgueiro, 2013. "International trade and emissions: The case of the Minas Gerais state — 2005," Energy Economics, Elsevier, vol. 40(C), pages 383-395.
    20. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    21. Stephen Chong & Rutger Hoekstra & Oscar Lemmers & Ilke Van Beveren & Marcel Van Den Berg & Ron Van Der Wal & Piet Verbiest, 2019. "The role of small- and medium-sized enterprises in the Dutch economy: an analysis using an extended supply and use table," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-24, December.
    22. Viktoras Kulionis, 2018. "Constructing energy accounts for WIOD 2016 release," Papers 1810.07112, arXiv.org.
    23. Chen, B. & Yang, Q. & Zhou, Sili & Li, J.S. & Chen, G.Q., 2017. "Urban economy's carbon flow through external trade: Spatial-temporal evolution for Macao," Energy Policy, Elsevier, vol. 110(C), pages 69-78.
    24. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    25. Kim, Yong-Gun & Yoo, Jonghyun & Oh, Wankeun, 2015. "Driving forces of rapid CO2 emissions growth: A case of Korea," Energy Policy, Elsevier, vol. 82(C), pages 144-155.
    26. Liu, Liwei & Chen, Chuxiang & Zhao, Yufei & Zhao, Erdong, 2015. "China׳s carbon-emissions trading: Overview, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 254-266.
    27. Jin Zhang and David C. Broadstock, 2016. "The Causality between Energy Consumption and Economic Growth for China in a Time-varying Framework," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    28. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    29. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    30. Bram Edens & Rutger Hoekstra & Daan Zult & Oscar Lemmers & Harry Wilting & Ronghao Wu, 2015. "A Method To Create Carbon Footprint Estimates Consistent With National Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 440-457, December.
    31. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    32. Kjartan Steen-Olsen & Anne Owen & Edgar G. Hertwich & Manfred Lenzen, 2014. "Effects Of Sector Aggregation On Co 2 Multipliers In Multiregional Input-Output Analyses," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 284-302, September.
    33. Li, J.S. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2015. "Mercury emissions by Beijing׳s fossil energy consumption: Based on environmentally extended input–output analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1167-1175.
    34. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    35. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    36. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    37. Changjian Wang & Fei Wang, 2015. "Structural Decomposition Analysis of Carbon Emissions and Policy Recommendations for Energy Sustainability in Xinjiang," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
    38. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.
    39. He, Peijun & Ng, Tsan Sheng & Su, Bin, 2019. "Energy-economic resilience with multi-region input–output linear programming models," Energy Economics, Elsevier, vol. 84(C).
    40. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    41. Zhang, Da & Caron, Justin & Winchester, Niven & Karplus, Valerie J., 2013. "Sectoral aggregation bias in the accounting of emissions embodied in trade and consumption," Conference papers 332330, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    42. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    43. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    44. Jiang, Lei & He, Shixiong & Tian, Xi & Zhang, Bo & Zhou, Haifeng, 2020. "Energy use embodied in international trade of 39 countries: Spatial transfer patterns and driving factors," Energy, Elsevier, vol. 195(C).
    45. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    46. Anwar Gasim, 2015. "Embodied energy in trade: What role does specialization play," Discussion Papers ks-1516-dp010a, King Abdullah Petroleum Studies and Research Center.
    47. Sun, Ya-Fang & Su, Bin & Zhong, Sheng & He, Junyi & Yu, Shiwei, 2024. "Determinants of Aggregated Embodied Carbon Intensity in Global Bilateral Exports by Firm Heterogeneity," Ecological Economics, Elsevier, vol. 218(C).
    48. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    49. Moran, Daniel D. & Lenzen, Manfred & Kanemoto, Keiichiro & Geschke, Arne, 2013. "Does ecologically unequal exchange occur?," Ecological Economics, Elsevier, vol. 89(C), pages 177-186.
    50. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    51. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    52. Jayanthakumaran, Kankesu & Liu, Ying, 2016. "Bi-lateral CO2 emissions embodied in Australia–China trade," Energy Policy, Elsevier, vol. 92(C), pages 205-213.
    53. Bordigoni, Mathieu & Hita, Alain & Le Blanc, Gilles, 2012. "Role of embodied energy in the European manufacturing industry: Application to short-term impacts of a carbon tax," Energy Policy, Elsevier, vol. 43(C), pages 335-350.
    54. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    55. Tatsuki Ueda, 2022. "Structural Decomposition Analysis of Japan’s Energy Transitions and Related CO2 Emissions in 2005–2015 Using a Hybrid Input-Output Table," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 763-786, April.
    56. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    57. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    58. Zhang, Zhuoying & Yang, Hong & Shi, Minjun, 2011. "Analyses of water footprint of Beijing in an interregional input–output framework," Ecological Economics, Elsevier, vol. 70(12), pages 2494-2502.
    59. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    60. Zhang, Youguo, 2013. "The responsibility for carbon emissions and carbon efficiency at the sectoral level: Evidence from China," Energy Economics, Elsevier, vol. 40(C), pages 967-975.
    61. Bu, Yan & Wang, Erda & Möst, Dominik & Lieberwirth, Martin, 2022. "How population migration affects carbon emissions in China: Factual and counterfactual scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    62. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    63. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    64. Maaike Bouwmeester & Jan Oosterhaven, 2013. "Specification and Aggregation Errors in Environmentally Extended Input–Output Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 307-335, November.
    65. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    66. Weitzel, Matthias & Ma, Tao, 2014. "Emissions embodied in Chinese exports taking into account the special export structure of China," Energy Economics, Elsevier, vol. 45(C), pages 45-52.
    67. Banie Naser Outchiri & Jie He, 2020. "Technical gap, trade partners and product mix evolution: how trading with China affects global CO2 emissions," Cahiers de recherche 20-07, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    68. Supasa, Tharinya & Hsiau, Shu-San & Lin, Shih-Mo & Wongsapai, Wongkot & Wu, Jiunn-Chi, 2016. "Has energy conservation been an effective policy for Thailand? An input–output structural decomposition analysis from 1995 to 2010," Energy Policy, Elsevier, vol. 98(C), pages 210-220.
    69. Moana S. Simas & Laura Golsteijn & Mark A. J. Huijbregts & Richard Wood & Edgar G. Hertwich, 2014. "The “Bad Labor” Footprint: Quantifying the Social Impacts of Globalization," Sustainability, MDPI, vol. 6(11), pages 1-27, October.
    70. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    71. Zhang, Moyi & Huang, Xian-Jin, 2012. "Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu Province, China," Energy, Elsevier, vol. 44(1), pages 515-526.
    72. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    73. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    74. de Koning, Arjan & Bruckner, Martin & Lutter, Stephan & Wood, Richard & Stadler, Konstantin & Tukker, Arnold, 2015. "Effect of aggregation and disaggregation on embodied material use of products in input–output analysis," Ecological Economics, Elsevier, vol. 116(C), pages 289-299.
    75. Wang, Zhaohua & Li, Yiming & Cai, Hailin & Yang, Yuantao & Wang, Bo, 2019. "Regional difference and drivers in China's carbon emissions embodied in internal trade," Energy Economics, Elsevier, vol. 83(C), pages 217-228.
    76. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    77. Piñero, Pablo & Heikkinen, Mari & Mäenpää, Ilmo & Pongrácz, Eva, 2015. "Sector aggregation bias in environmentally extended input output modeling of raw material flows in Finland," Ecological Economics, Elsevier, vol. 119(C), pages 217-229.
    78. Jiajia Li & Yucong Liu & Houjian Li & Abbas Ali Chandio, 2021. "Heterogeneous Driving Factors of Carbon Emissions Embedded in China’s Export: An Application of the LASSO Model," IJERPH, MDPI, vol. 18(19), pages 1-18, October.
    79. Qu, Lili & Zhang, Tianzhu & Liang, Sai, 2013. "Waste management of urban agglomeration on a life cycle basis," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 47-53.
    80. Zengkai Zhang & ZhongXiang Zhang & Kunfu Zhu, 2019. "Allocating carbon responsibility: the role of spatial production fragmentation," CCEP Working Papers 1901, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    81. Banerjee, Suvajit, 2021. "Conjugation of border and domestic carbon adjustment and implications under production and consumption-based accounting of India's National Emission Inventory: A recursive dynamic CGE analysis," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 68-86.
    82. Cho, Cheol-Joo, 2013. "An exploration of reliable methods of estimating emergy requirements at the regional scale: Traditional emergy analysis, regional thermodynamic input–output analysis, or the conservation rule-implicit," Ecological Modelling, Elsevier, vol. 251(C), pages 288-296.
    83. Lin, Jianyi & Hu, Yuanchao & Zhao, Xiaofeng & Shi, Longyu & Kang, Jiefeng, 2017. "Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints," Energy Policy, Elsevier, vol. 108(C), pages 460-466.
    84. Liu, Yu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "‘Made in China’: A reevaluation of embodied CO2 emissions in Chinese exports using firm heterogeneity information," Applied Energy, Elsevier, vol. 184(C), pages 1106-1113.
    85. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    86. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    87. Leying Wu & Zheng Wang, 2017. "Examining drivers of the emissions embodied in trade," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    88. Yu, Liu & Meng, Bo & Hubacek, Klaus & Xue, Jinjun & Feng, Kuishuang & Gao, Yuning, 2016. "How does firm heterogeneity information impact the estimation of embodied carbon emissions in Chinese exports?," IDE Discussion Papers 592, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    89. Lach, Łukasz, 2022. "Optimization based structural decomposition analysis as a tool for supporting environmental policymaking," Energy Economics, Elsevier, vol. 115(C).
    90. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    91. Saibal Kar & Devleena Majumdar, 2016. "MFN Tariff Rates and Carbon Emission: Evidence from Lower-Middle-Income Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 493-510, July.
    92. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    93. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    94. Zhang, Bo & Chen, G.Q., 2010. "Methane emissions by Chinese economy: Inventory and embodiment analysis," Energy Policy, Elsevier, vol. 38(8), pages 4304-4316, August.
    95. Li, Yingzhu & Su, Bin & Dasgupta, Shyamasree, 2018. "Structural path analysis of India's carbon emissions using input-output and social accounting matrix frameworks," Energy Economics, Elsevier, vol. 76(C), pages 457-469.
    96. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    97. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    98. Zhang, Youguo, 2015. "Provincial responsibility for carbon emissions in China under different principles," Energy Policy, Elsevier, vol. 86(C), pages 142-153.
    99. Xin Yan & Jianping Ge, 2017. "The Economy-Carbon Nexus in China: A Multi-Regional Input-Output Analysis of the Influence of Sectoral and Regional Development," Energies, MDPI, vol. 10(1), pages 1-28, January.
    100. Sun, Licheng & Wang, Qunwei & Zhang, Jijian, 2017. "Inter-industrial Carbon Emission Transfers in China: Economic Effect and Optimization Strategy," Ecological Economics, Elsevier, vol. 132(C), pages 55-62.
    101. Rui Huang & Arunima Malik & Manfred Lenzen & Yutong Jin & Yafei Wang & Futu Faturay & Zhiyi Zhu, 2022. "Supply-chain impacts of Sichuan earthquake: a case study using disaster input–output analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2227-2248, February.
    102. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    103. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    104. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    105. Xu, Xueliu & Mu, Mingjie & Wang, Qian, 2017. "Recalculating CO2 emissions from the perspective of value-added trade: An input-output analysis of China's trade data," Energy Policy, Elsevier, vol. 107(C), pages 158-166.
    106. Pothen, Frank, 2017. "A structural decomposition of global Raw Material Consumption," Ecological Economics, Elsevier, vol. 141(C), pages 154-165.
    107. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    108. António Rua & Fátima Cardoso, 2023. "Gone with the wind: A structural decomposition of carbon emissions," Working Papers w202312, Banco de Portugal, Economics and Research Department.
    109. Sato, Misato, 2014. "Product level embodied carbon flows in bilateral trade," LSE Research Online Documents on Economics 57232, London School of Economics and Political Science, LSE Library.
    110. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    111. Mizgajski Jan T., 2012. "The Impact of Polish-German Trade Flows on CO2 Emissions," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 152-164, January.
    112. Xie Zeqiong & He Junfei, 2022. "Decomposition and sector aggregation analysis of indirect household carbon emission indicators: a case study of Guangdong Province in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6903-6924, May.
    113. Wei Zhen & Quande Qin & Lei Jiang, 2022. "Heterogeneous Domestic Intermediate Input-Related Carbon Emissions in China’s Exports," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 453-479, March.
    114. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    115. Zhu, Kunfu & Guo, Xuefan & Zhang, Zengkai, 2022. "Reevaluation of the carbon emissions embodied in global value chains based on an inter-country input-output model with multinational enterprises," Applied Energy, Elsevier, vol. 307(C).
    116. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    117. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    118. Mingxiang Deng & Wei Li & Yan Hu, 2016. "Decomposing Industrial Energy-Related CO 2 Emissions in Yunnan Province, China: Switching to Low-Carbon Economic Growth," Energies, MDPI, vol. 9(1), pages 1-19, January.
    119. Hertwich, Edgar G., 2020. "Carbon fueling complex global value chains tripled in the period 1995–2012," Energy Economics, Elsevier, vol. 86(C).
    120. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    121. Guo, Ju’e & Zhang, Zengkai & Meng, Lei, 2012. "China’s provincial CO2 emissions embodied in international and interprovincial trade," Energy Policy, Elsevier, vol. 42(C), pages 486-497.
    122. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    123. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    124. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
    125. Pollesch, N. & Dale, V.H., 2015. "Applications of aggregation theory to sustainability assessment," Ecological Economics, Elsevier, vol. 114(C), pages 117-127.
    126. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    127. Jan T. Mizgajski, 2013. "CO2 Embodied in Trade between Poland and Selected Countries," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 2(4), pages 48-60, September.
    128. Jiang, Xuemei & Guan, Dabo & Zhang, Jin & Zhu, Kunfu & Green, Christopher, 2015. "Firm ownership, China's export related emissions, and the responsibility issue," Energy Economics, Elsevier, vol. 51(C), pages 466-474.
    129. Lin, Boqiang & Long, Houyin, 2014. "How to promote energy conservation in China’s chemical industry," Energy Policy, Elsevier, vol. 73(C), pages 93-102.
    130. Cadarso, María-Ángeles & López, Luis-Antonio & Gómez, Nuria & Tobarra, María-Ángeles, 2012. "International trade and shared environmental responsibility by sector. An application to the Spanish economy," Ecological Economics, Elsevier, vol. 83(C), pages 221-235.
    131. Huang, Jian-Bai & Chen, Xi & Song, Yi, 2020. "What drives embodied metal consumption in China's imports and exports," Resources Policy, Elsevier, vol. 69(C).
    132. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    133. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    134. Tianrui Wang & Yu Chen & Leya Zeng, 2022. "Spatial-Temporal Evolution Analysis of Carbon Emissions Embodied in Inter-Provincial Trade in China," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    135. Manfred Lenzen, 2016. "Structural analyses of energy use and carbon emissions -- an overview," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 119-132, June.
    136. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    137. Kyunsuk Choi & Hiroyuki Matsuura & Hyunjoung Lee & Il Sohn, 2016. "Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    138. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    139. Yue-Jun Zhang & Xiao-Juan Bian & Weiping Tan, 2018. "The linkages of sectoral carbon dioxide emission caused by household consumption in China: evidence from the hypothetical extraction method," Empirical Economics, Springer, vol. 54(4), pages 1743-1775, June.
    140. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    141. Marin, Giovanni & Mazzanti, Massimiliano & Montini, Anna, 2012. "Linking NAMEA and Input output for ‘consumption vs. production perspective’ analyses," Ecological Economics, Elsevier, vol. 74(C), pages 71-84.
    142. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    143. Niu, Meng & Wang, Zhenguo & Zhang, Yabin, 2022. "How information and communication technology drives (routine and non-routine) jobs: Structural path and decomposition analysis for China," Telecommunications Policy, Elsevier, vol. 46(1).
    144. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Guo, Lin & Zhang, Kun & Xue, Jinjun & Liang, Qiao-Mei, 2019. "Distributional impact of carbon pricing in Chinese provinces," Energy Economics, Elsevier, vol. 81(C), pages 327-340.
    145. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    146. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    147. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
    148. Pothen, Frank & Schymura, Michael, 2015. "Bigger cakes with fewer ingredients? A comparison of material use of the world economy," Ecological Economics, Elsevier, vol. 109(C), pages 109-121.
    149. Qian Zhang & Jun Nakatani & Yuichi Moriguchi, 2015. "Compilation of an Embodied CO 2 Emission Inventory for China Using 135-Sector Input-Output Tables," Sustainability, MDPI, vol. 7(7), pages 1-17, June.
    150. Liu, Qiaoling & Wang, Qi, 2015. "Reexamine SO2 emissions embodied in China's exports using multiregional input–output analysis," Ecological Economics, Elsevier, vol. 113(C), pages 39-50.
    151. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    152. Ding, Tao & Ning, Yadong & Zhang, Yan, 2018. "The contribution of China’s bilateral trade to global carbon emissions in the context of globalization," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 78-88.
    153. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
    154. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    155. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.
    156. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    157. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    158. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    159. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    160. Huangling Gu & Yan Liu & Hao Xia & Xiao Tan & Yanjia Zeng & Xianchao Zhao, 2023. "Spatiotemporal Dynamic Evolution and Its Driving Mechanism of Carbon Emissions in Hunan Province in the Last 20 Years," IJERPH, MDPI, vol. 20(4), pages 1-25, February.
    161. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    162. Rong Yuan & Tao Zhao & Jing Xu, 2017. "A subsystem input–output decomposition analysis of CO2 emissions in the service sectors: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2181-2198, December.
    163. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    164. Li, Yingzhu & Shi, Xunpeng & Su, Bin, 2017. "Economic, social and environmental impacts of fuel subsidies: A revisit of Malaysia," Energy Policy, Elsevier, vol. 110(C), pages 51-61.
    165. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    166. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    167. Satoshi Nakano & Sonoe Arai & Ayu Washizu, 2017. "Economic impacts of Japan’s renewable energy sector and the feed-in tariff system: using an input–output table to analyze a next-generation energy system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 555-580, July.
    168. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
    169. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    170. Anke Schaffartzik & Dominik Wiedenhofer & Nina Eisenmenger, 2015. "Raw Material Equivalents: The Challenges of Accounting for Sustainability in a Globalized World," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    171. Ryohei Nakamura, 2013. "A New Approach to the Endogenous Correction of Interregional Income Disparity: Extended Interregional IO by Trading Biomass CO2 Credit," ERSA conference papers ersa13p367, European Regional Science Association.
    172. Jiang, Xuemei & Duan, Yuwan & Green, Christopher, 2017. "Regional disparity in energy intensity of China and the role of industrial and export structure," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 209-218.
    173. Zhang, Youguo & Tang, Zhipeng, 2015. "Driving factors of carbon embodied in China's provincial exports," Energy Economics, Elsevier, vol. 51(C), pages 445-454.
    174. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    175. Jingyuan Li & Jinhua Cheng & Beidi Diao & Yaqi Wu & Peiqi Hu & Shurui Jiang, 2021. "Social and Economic Factors of Industrial Carbon Dioxide in China: From the Perspective of Spatiotemporal Transition," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    176. Jiansuo Pei & Bo Meng & Fei Wang & Jinjun Xue & Zhongxiu Zhao, 2018. "Production Sharing, Demand Spillovers And Co2 Emissions: The Case Of Chinese Regions In Global Value Chains," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 275-293, March.
    177. Yang Yang & Suocheng Dong & Fujia Li & Hao Cheng & Zehong Li & Yu Li & Shantong Li, 2021. "An analysis on the adoption of an interregional carbon emission reduction allocation approach in the context of China’s interprovincial carbon emission transfer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4385-4411, March.
    178. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    179. Rezgar FEIZI & Sahar AMIDI & Thais NUNEZ-ROCHA & Isabelle RABAUD, 2022. "Carbon Tax and Emissions Transfer: a Spatial Analysis," LEO Working Papers / DR LEO 2965, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    180. Gavrilova, Olga & Vilu, Raivo, 2012. "Production-based and consumption-based national greenhouse gas inventories: An implication for Estonia," Ecological Economics, Elsevier, vol. 75(C), pages 161-173.
    181. Leying Wu & Zhangqi Zhong & Changxin Liu & Zheng Wang, 2017. "Examining PM 2.5 Emissions Embodied in China’s Supply Chain Using a Multiregional Input-Output Analysis," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    182. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
    183. Xie, Rui & Hu, Guangxiao & Zhang, Youguo & Liu, Yu, 2017. "Provincial transfers of enabled carbon emissions in China: A supply-side perspective," Energy Policy, Elsevier, vol. 107(C), pages 688-697.
    184. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    185. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    186. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    187. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    188. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    189. Christos T. Papadas & Nikolaos Vlassis, 2018. "A structural decomposition analysis of the pollution terms of trade," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(1), pages 57-68, January.
    190. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    191. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    192. Ernst, Anne & Hinterlang, Natascha & Mahle, Alexander & Stähler, Nikolai, 2022. "Carbon pricing, border adjustment and climate clubs: An assessment with EMuSe," Discussion Papers 25/2022, Deutsche Bundesbank.
    193. Xi Zhang & Zheng Li & Linwei Ma & Chinhao Chong & Weidou Ni, 2019. "Forecasting the Energy Embodied in Construction Services Based on a Combination of Static and Dynamic Hybrid Input-Output Models," Energies, MDPI, vol. 12(2), pages 1-26, January.
    194. Liu, Hongguang & Liu, Weidong & Fan, Xiaomei & Zou, Wei, 2015. "Carbon emissions embodied in demand–supply chains in China," Energy Economics, Elsevier, vol. 50(C), pages 294-305.
    195. FæHn, Taran & Jacobsen, Karl & Bye, Brita, 2011. "Diffusion of Climate Technologies in Presence of an Emissions Cap," Conference papers 332131, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    196. Hongguang Liu & Xiaomei Fan, 2017. "Value-Added-Based Accounting of CO 2 Emissions: A Multi-Regional Input-Output Approach," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    197. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    198. Jordan Hristov & Aleksandra Martinovska-Stojcheska & Yves Surry, 2016. "The Economic Role of Water in FYR Macedonia: An Input–Output Analysis and Implications for the Western Balkan Countries," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-37, December.
    199. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    200. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    201. Chen, Weidong & Wu, Fangyong & Geng, Wenxin & Yu, Guanyi, 2017. "Carbon emissions in China’s industrial sectors," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 264-273.
    202. Li, Rongrong & Wang, Qiang & Wang, Xuefeng & Zhou, Yulin & Han, Xinyu & Liu, Yi, 2022. "Germany's contribution to global carbon reduction might be underestimated – A new assessment based on scenario analysis with and without trade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    203. Yuting Dang & Yating Song & Muhammad Mohiuddin & Dan Sheng, 2022. "Towards Cleaner Production Ecosystem: An Analysis of Embodied Industrial Pollution in International Trade of China’s Processing versus Normal Exports," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    204. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    205. Fujimori, Shinichiro & Matsuoka, Yuzuru, 2011. "Development of method for estimation of world industrial energy consumption and its application," Energy Economics, Elsevier, vol. 33(3), pages 461-473, May.
    206. Wang, Saige & Cao, Tao & Chen, Bin, 2021. "Identifying critical sectors and supply chain paths for virtual water and energy-related water trade in China," Applied Energy, Elsevier, vol. 299(C).

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.