IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921015142.html
   My bibliography  Save this article

Exploring household emission patterns and driving factors in Japan using machine learning methods

Author

Listed:
  • Chen, Peipei
  • Wu, Yi
  • Zhong, Honglin
  • Long, Yin
  • Meng, Jing

Abstract

Given by the ambitious GHG mitigation targets set by governments worldwide, household is playing an increasingly important role for reaching listed reduction goals. Consequently, a deep understanding of its emission patterns and the corresponding driving factors are of great importance for exploring the untapped potential of household. However, how to accurately capture household emission features still demand further support from both data and method development. To bridge this knowledge gap, we try to use machine learning technology, which is well linked to the micro-level household survey data, to identify key determinants that could explain the household home-energy consumption and associated emissions. Here, we investigate the household CO2 emissions based on a representative survey which covers 31,133 households in Japan. Six types of machine learning process are employed to find key factors determining to different household emission patterns. Results show that demographic structure, average age and electricity-intensive appliances (electric water heaters, electric heaters, etc.) are most significant driving factors that explain differences in household emissions. Results also further verified that differences in driving factors can be observed in identifying various household emission patterns. The results of study provide vital information for the customized decarbonization pathways for households, as well as discussing further energy-saving behaviours from data-oriented method.

Suggested Citation

  • Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015142
    DOI: 10.1016/j.apenergy.2021.118251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Wang, Zhaohua & Zhang, Bin & Yin, Jianhua & Zhang, Yixiang, 2011. "Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing, China," Energy Policy, Elsevier, vol. 39(6), pages 3550-3557, June.
    3. Tso, Geoffrey K.F. & Yau, Kelvin K.W., 2007. "Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks," Energy, Elsevier, vol. 32(9), pages 1761-1768.
    4. Song, Kwonsik & Anderson, Kyle & Lee, SangHyun, 2020. "An energy-cyber-physical system for personalized normative messaging interventions: Identification and classification of behavioral reference groups," Applied Energy, Elsevier, vol. 260(C).
    5. Jianda Wang & Xiucheng Dong & Kangyin Dong, 2021. "How renewable energy reduces CO2 emissions? Decoupling and decomposition analysis for 25 countries along the Belt and Road," Applied Economics, Taylor & Francis Journals, vol. 53(40), pages 4597-4613, August.
    6. Brian C. O’Neill & Timothy R. Carter & Kristie Ebi & Paula A. Harrison & Eric Kemp-Benedict & Kasper Kok & Elmar Kriegler & Benjamin L. Preston & Keywan Riahi & Jana Sillmann & Bas J. Ruijven & Detlef, 2020. "Achievements and needs for the climate change scenario framework," Nature Climate Change, Nature, vol. 10(12), pages 1074-1084, December.
    7. Gintare Stankuniene & Dalia Streimikiene & Grigorios L. Kyriakopoulos, 2020. "Systematic Literature Review on Behavioral Barriers of Climate Change Mitigation in Households," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    9. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    10. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
    11. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    12. Zhou, Meifang & Liu, Yu & Feng, Shenghao & Liu, Yang & Lu, Yingying, 2018. "Decomposition of rebound effect: An energy-specific, general equilibrium analysis in the context of China," Applied Energy, Elsevier, vol. 221(C), pages 280-298.
    13. Day, Rosie, 2015. "Low carbon thermal technologies in an ageing society – What are the issues?," Energy Policy, Elsevier, vol. 84(C), pages 250-256.
    14. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    15. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    16. Fuks, Mauricio & Salazar, Esther, 2008. "Applying models for ordinal logistic regression to the analysis of household electricity consumption classes in Rio de Janeiro, Brazil," Energy Economics, Elsevier, vol. 30(4), pages 1672-1692, July.
    17. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    18. Kuriyama, Akihisa & Tamura, Kentaro & Kuramochi, Takeshi, 2019. "Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan's NDC," Energy Policy, Elsevier, vol. 130(C), pages 328-340.
    19. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    20. Jin, Taeyoung & Kim, Jinsoo, 2019. "A new approach for assessing the macroeconomic growth energy rebound effect," Applied Energy, Elsevier, vol. 239(C), pages 192-200.
    21. Watabe, Akihiro & Leaver, Jonathan & Ishida, Hiroyuki & Shafiei, Ehsan, 2019. "Impact of low emissions vehicles on reducing greenhouse gas emissions in Japan," Energy Policy, Elsevier, vol. 130(C), pages 227-242.
    22. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    23. Lau, Lee Chung & Lee, Keat Teong & Mohamed, Abdul Rahman, 2012. "Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5280-5284.
    24. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    25. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    26. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    27. Meangbua, Onicha & Dhakal, Shobhakar & Kuwornu, John K.M., 2019. "Factors influencing energy requirements and CO2 emissions of households in Thailand: A panel data analysis," Energy Policy, Elsevier, vol. 129(C), pages 521-531.
    28. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    29. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    30. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    31. Andor, Mark A. & Fels, Katja M., 2018. "Behavioral Economics and Energy Conservation – A Systematic Review of Non-price Interventions and Their Causal Effects," Ecological Economics, Elsevier, vol. 148(C), pages 178-210.
    32. Dou, Yue & Zhao, Jun & Dong, Xiucheng & Dong, Kangyin, 2021. "Quantifying the impacts of energy inequality on carbon emissions in China: A household-level analysis," Energy Economics, Elsevier, vol. 102(C).
    33. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    34. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    35. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    2. Lei, Mingyu & Cai, Wenjia & Liu, Wenling & Wang, Can, 2022. "The heterogeneity in energy consumption patterns and home appliance purchasing preferences across urban households in China," Energy, Elsevier, vol. 253(C).
    3. Xiyue Hao & Chuyue Yan & Daisuke Narumi, 2024. "Assessing CO 2 Reduction Effects Through Decarbonization Scenarios in the Residential and Transportation Sectors: Challenges and Solutions for Japan’s Hilly and Mountainous Areas," Sustainability, MDPI, vol. 16(23), pages 1-25, November.
    4. Umar Nawaz Kayani & Mochammad Fahlevi & Roohi Mumtaz & Reema Al Qaruty & Muzaffar Asad, 2023. "The Nexus between Carbon Emissions and Per Capita Income of Households: Evidence from Japanese Prefectures," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 567-572, November.
    5. Gao, Xue & Chen, Xuan & Liu, Lan-Cui, 2024. "Exploring the determinants of the evolution of urban and rural household carbon footprints inequality in China," Energy Policy, Elsevier, vol. 185(C).
    6. Chen, Di & Wang, Chunyan & Liu, Yi, 2023. "How household food shopping behaviors changed during COVID-19 lockdown period: Evidence from Beijing, China," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    7. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    8. Li, Jiajia & Yang, Shiyu & Li, Jun & Li, Houjian, 2024. "Targeting SDG7: Identifying heterogeneous energy dilemmas for socially disadvantaged groups in India using machine learning," Energy Economics, Elsevier, vol. 138(C).
    9. Zhao, Mengxue & Yuan, Zhihang & Chan, Hon S., 2023. "Housing wealth and household carbon emissions: The role of homeownership in China," Ecological Economics, Elsevier, vol. 212(C).
    10. Wang, Yueying & Liu, Qinming, 2024. "Examining factors driving household carbon emissions from elderly families—Evidence from Japan," Finance Research Letters, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xunpeng & Wang, Keying & Cheong, Tsun Se & Zhang, Hongwu, 2020. "Prioritizing driving factors of household carbon emissions: An application of the LASSO model with survey data," Energy Economics, Elsevier, vol. 92(C).
    2. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    3. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    4. Kong, Li & Mu, Xianzhong & Hu, Guangwen & Tu, Chuang, 2023. "Will energy efficiency improvements reduce energy consumption? Perspective of rebound effect and evidence from beijing," Energy, Elsevier, vol. 263(PA).
    5. Xie, Jun & Zhou, Shaojie & Teng, Fei & Gu, Alun, 2023. "The characteristics and driving factors of household CO2 and non-CO2 emissions in China," Ecological Economics, Elsevier, vol. 213(C).
    6. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    7. Jakučionytė-Skodienė, Miglė & Krikštolaitis, Ričardas & Liobikienė, Genovaitė, 2022. "The contribution of changes in climate-friendly behaviour, climate change concern and personal responsibility to household greenhouse gas emissions: Heating/cooling and transport activities in the Eur," Energy, Elsevier, vol. 246(C).
    8. Kong, Li & Hu, Guangwen & Mu, Xianzhong & Li, Guohao & Zhang, Zheng, 2023. "The energy rebound effect in households: Evidence from urban and rural areas in Beijing," Applied Energy, Elsevier, vol. 343(C).
    9. Li, Jiajia & Li, Jun & Zhang, Jian, 2024. "Can digitalization facilitate low carbon lifestyle? --Evidence from households’ embedded emissions in China," Technology in Society, Elsevier, vol. 76(C).
    10. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    11. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    12. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    13. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    14. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    15. Liang, Xiaoying & Min Fan, & Xiao, Yuting & Yao, Jing, 2022. "Temporal-spatial characteristics of energy-based carbon dioxide emissions and driving factors during 2004–2019, China," Energy, Elsevier, vol. 261(PA).
    16. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    17. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    18. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Yunus Zengin & Serkan Naktiyok & Erdoğan Kaygın & Onur Kavak & Ethem Topçuoğlu, 2021. "An Investigation upon Industry 4.0 and Society 5.0 within the Context of Sustainable Development Goals," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    20. Yu, Bolin & Fang, Debin & Pan, Yuling & Jia, Yunxia, 2023. "Countries’ green total-factor productivity towards a low-carbon world: The role of energy trilemma," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.