IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1403-d492367.html
   My bibliography  Save this article

Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River

Author

Listed:
  • Di Zhang

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Zhanqi Wang

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Shicheng Li

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China)

  • Hongwei Zhang

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences (Wuhan), Wuhan 430074, China)

Abstract

The urban agglomerations in the middle reaches of the Yangtze River (MYR-UA) are facing a severe challenge in reducing carbon emissions while maintaining stable economic growth and prioritizing ecological protection. The energy consumption related to land urbanization makes an important contribution to the increase in carbon emissions. In this study, an IPAT/Kaya identity model is used to understand how land urbanization affected carbon emissions in Wuhan, Changsha, and Nanchang, the three major cities in the middle reaches of the Yangtze River, from 2000 to 2017. Following the core idea of the Kaya identity model, sources of carbon emissions are decomposed into eight factors: urban expansion, economic level, industrialization, population structure, land use, population density, energy intensity, and carbon emission intensity. Furthermore, using the Logarithmic Mean Divisia Index (LMDI), we analyze how the different time periods and time series driving forces, especially land urbanization, affect regional carbon emissions. The results indicate that the total area of construction land and the total carbon emissions increased from 2000 to 2017, whereas the growth in carbon emissions decreased later in the period. Energy intensity is the biggest factor in restraining carbon emissions, followed by population density. Urban expansion is more significant than economic growth in promoting carbon emissions, especially in Nanchang. In contrast, the carbon emission intensity has little influence on carbon emissions. Changes in population structure, industrial level, and land use vary regionally and temporally over the different time period.

Suggested Citation

  • Di Zhang & Zhanqi Wang & Shicheng Li & Hongwei Zhang, 2021. "Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1403-:d:492367
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1403/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1403/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    2. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    3. Fergus Green & Nicholas Stern, 2017. "China's changing economy: implications for its carbon dioxide emissions," Climate Policy, Taylor & Francis Journals, vol. 17(4), pages 423-442, May.
    4. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    5. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    6. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    7. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    8. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    9. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    10. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    11. Ang, B.W. & Wang, H., 2015. "Index decomposition analysis with multidimensional and multilevel energy data," Energy Economics, Elsevier, vol. 51(C), pages 67-76.
    12. Jiang Xu & Anthony Yeh & Fulong Wu, 2009. "Land Commodification: New Land Development and Politics in China since the Late 1990s," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 33(4), pages 890-913, December.
    13. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    14. Wang, Shaojian & Zeng, Jingyuan & Huang, Yongyuan & Shi, Chenyi & Zhan, Peiyu, 2018. "The effects of urbanization on CO2 emissions in the Pearl River Delta: A comprehensive assessment and panel data analysis," Applied Energy, Elsevier, vol. 228(C), pages 1693-1706.
    15. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    16. Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    17. Chuanhe Xiong & Degang Yang & Jinwei Huo, 2016. "Spatial-Temporal Characteristics and LMDI-Based Impact Factor Decomposition of Agricultural Carbon Emissions in Hotan Prefecture, China," Sustainability, MDPI, vol. 8(3), pages 1-14, March.
    18. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    19. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    20. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    21. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    22. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    23. Jie Zhao & Nguyen Xuan Thinh & Cheng Li, 2017. "Investigation of the Impacts of Urban Land Use Patterns on Energy Consumption in China: A Case Study of 20 Provincial Capital Cities," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengcheng Li & Haimeng Liu & Shangkun Yu & Jianshi Wang & Yi Miao & Chengxin Wang, 2022. "Estimating the Decoupling between Net Carbon Emissions and Construction Land and Its Driving Factors: Evidence from Shandong Province, China," IJERPH, MDPI, vol. 19(15), pages 1-26, July.
    2. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.
    3. Ruijiao Zhang & Zhengxiang Wang & Lifei Wei & Mingda Zhang & Qikai Lu & Bangqing Chen, 2024. "Long-Term Analysis of Spatial–Temporal Variation in Ecological Space Quality within Urban Agglomeration in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 13(6), pages 1-22, June.
    4. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Liu, Yisheng & Yang, Meng & Cheng, Feiyu & Tian, Jinzhao & Du, Zhuoqun & Song, Pengbo, 2022. "Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method," Energy, Elsevier, vol. 256(C).
    6. Pan, Yuxi & Zhang, Siqian & Zhang, Mengyue, 2024. "The impact of entrepreneurship of farmers on agriculture and rural economic growth: Innovation-driven perspective," Innovation and Green Development, Elsevier, vol. 3(1).
    7. Licong Xing & Edmund Ntom Udemba & Merve Tosun & Ibrahim Abdallah & Imed Boukhris, 2023. "Sustainable development policies of renewable energy and technological innovation toward climate and sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1178-1192, April.
    8. Yiqi Fan & Ying Wang & Rumei Han & Xiaoqin Li, 2024. "Spatial-Temporal Dynamics of Carbon Budgets and Carbon Balance Zoning: A Case Study of the Middle Reaches of the Yangtze River Urban Agglomerations, China," Land, MDPI, vol. 13(3), pages 1-20, February.
    9. Hongjiao Qu & Weiyin Wang & Chang You & Luo Guo, 2024. "Interaction Effect of Carbon Emission and Ecological Risk in the Yangtze River Economic Belt: New Insights into Multi-Simulation Scenarios," Land, MDPI, vol. 13(7), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    2. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    3. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    4. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    5. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    6. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    7. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    8. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    9. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    10. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    11. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    12. Liu, Qianqian & Wang, Shaojian & Zhang, Wenzhong & Li, Jiaming & Kong, Yunlong, 2019. "Examining the effects of income inequality on CO2 emissions: Evidence from non-spatial and spatial perspectives," Applied Energy, Elsevier, vol. 236(C), pages 163-171.
    13. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    14. Xu, Aiting & Song, Miaoyuan & Wu, Yunguang & Luo, Yifan & Zhu, Yuhan & Qiu, Keyang, 2024. "Effects of new urbanization on China's carbon emissions: A quasi-natural experiment based on the improved PSM-DID model," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    15. Ding, Dan & Liu, Xiaoping & Xu, Xiaocong, 2024. "Projecting the future fine-resolution carbon dioxide emissions under the shared socioeconomic pathways for carbon peak evaluation," Applied Energy, Elsevier, vol. 365(C).
    16. Xiao, Huijuan & Duan, Zhiyuan & Zhou, Ya & Zhang, Ning & Shan, Yuli & Lin, Xiyan & Liu, Guosheng, 2019. "CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    18. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    19. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    20. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1403-:d:492367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.