IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i12d10.1007_s11269-019-02338-0.html
   My bibliography  Save this article

Quantification of the Driving Factors of Water Use in the Productive Sector Change Using Various Decomposition Methods

Author

Listed:
  • Jie Yang

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

  • Xiaohong Chen

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

Abstract

The water use in the productive sector in developing regions increases with quick socioeconomic development. This study is a quantitative analysis of the factors affecting changes in water use of the productive sector. Using Guangdong province as a case study, the driving factors of changes in water use in the productive sector are summarized as population, affluence, structure and technology factors on the basis of the impact = population × affluence × technology (IPAT) model (GDP is expressed at constant prices). Then the Laspeyres, the logarithmic mean Divisia index (LMDI), and the Shapley value decomposition model were adopted to determine the appropriate method and quantify the relative contribution of the driving factors. The results showed that the LMDI decomposition model was preferable for this case due to its accuracy, easy to use and expression. Affluence factor and population factor induce positive variation of water use of the productive sector, while structure factor and technology factor induce negative variation of water use of the productive sector. We also determined that water restriction policies helped to curb the increasing trend in water use of the productive sector, but also hinder economic growth to a certain extent. And we suggest that the future direction of water saving in the study area should focus on industrial restructuring. These findings have significant policy implications for water use in developing countries.

Suggested Citation

  • Jie Yang & Xiaohong Chen, 2019. "Quantification of the Driving Factors of Water Use in the Productive Sector Change Using Various Decomposition Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4105-4121, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02338-0
    DOI: 10.1007/s11269-019-02338-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02338-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02338-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Johan Rockström & Malin Falkenmark, 2015. "Agriculture: Increase water harvesting in Africa," Nature, Nature, vol. 519(7543), pages 283-285, March.
    3. Aidam, Patricia Woedem, 2015. "The impact of water-pricing policy on the demand for water resources by farmers in Ghana," Agricultural Water Management, Elsevier, vol. 158(C), pages 10-16.
    4. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    5. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    6. Anthony Shorrocks, 2013. "Decomposition procedures for distributional analysis: a unified framework based on the Shapley value," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 11(1), pages 99-126, March.
    7. Lilian Elabras Veiga & Alessandra Magrini, 2013. "The Brazilian Water Resources Management Policy: Fifteen Years of Success and Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2287-2302, May.
    8. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    9. Qin, Ying & Curmi, Elizabeth & Kopec, Grant M. & Allwood, Julian M. & Richards, Keith S., 2015. "China's energy-water nexus – assessment of the energy sector's compliance with the “3 Red Lines” industrial water policy," Energy Policy, Elsevier, vol. 82(C), pages 131-143.
    10. Hsiao Chih-Ru & Raghavan T. E. S., 1993. "Shapley Value for Multichoice Cooperative Games, I," Games and Economic Behavior, Elsevier, vol. 5(2), pages 240-256, April.
    11. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    12. Jan Eliasson, 2015. "The rising pressure of global water shortages," Nature, Nature, vol. 517(7532), pages 6-6, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristian Skånberg & Åsa Svenfelt, 2022. "Expanding the IPAT identity to quantify backcasting sustainability scenarios," Futures & Foresight Science, John Wiley & Sons, vol. 4(2), June.
    2. Shen Yilin & Guo Ying & Guo Yuanyuan & Wu Lanzhen & Shen Yanjun, 2024. "Evaluating water resources sustainability of water-scarcity basin from a scope of WEF-Nexus decomposition: the case of Yellow River Basin," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29583-29603, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    2. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    3. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    4. Xinlin Zhang & Yuan Zhao & Qi Sun & Changjian Wang, 2017. "Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang, China," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    5. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    6. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    7. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    8. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    9. Román-Collado, Rocío & Morales-Carrión, Any Viviana, 2018. "Towards a sustainable growth in Latin America: A multiregional spatial decomposition analysis of the driving forces behind CO2 emissions changes," Energy Policy, Elsevier, vol. 115(C), pages 273-280.
    10. Fei Wang & Changjian Wang & Jing Chen & Zeng Li & Ling Li, 2020. "Examining the determinants of energy-related carbon emissions in Central Asia: country-level LMDI and EKC analysis during different phases," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7743-7769, December.
    11. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    12. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    13. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    14. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    15. Wang, Qunwei & Hang, Ye & Zhou, P. & Wang, Yizhong, 2016. "Decoupling and attribution analysis of industrial carbon emissions in Taiwan," Energy, Elsevier, vol. 113(C), pages 728-738.
    16. Carlino, Laurent & Coppens, François & González, Javier & Ortega, Manuel & Pérez-Duarte, Sébastien & Rubbrecht, Ilse & Vennix, Saskia, 2017. "Decomposition techniques for financial ratios of European non-financial listed groups," Statistics Paper Series 21, European Central Bank.
    17. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    18. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    19. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    20. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02338-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.