IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v114y2022ics0140988322003966.html
   My bibliography  Save this article

The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China

Author

Listed:
  • Wang, Kunlun
  • Zheng, Leven J.
  • Zhang, Justin Zuopeng
  • Yao, Hongjiang

Abstract

The transport sector accounts for about a quarter of the world’s carbon emissions. Given the huge future growth of the carbon emissions of the transport sector and its tight links to socio-economic development, the introduction of new energy vehicles can not only reduce carbon emissions but also decarbonize the entire economic system by decreasing carbon intensity. Taking advantage of a promotion project in China as a natural experiment, this paper explores the causal effect of promoting new energy vehicles on reducing carbon intensity. Our empirical results show that the promotion of new energy vehicles decreases the carbon intensity in demonstration cities by about 4.5% and decomposition analyses show that less than one-fifths of the decrease comes from the reduction of carbon emissions, and the other four-fifths result from the increases in outputs. Mechanism analyses suggest that in terms of passenger vehicles, this project increases the number of newly registered pure electric passengers motor vehicles, but has no influence on public transportation and taxis. Moreover, the promotion of new energy vehicles by this project is not brought about by the subsidy policy for the private purchase of them. We also put forward some policy recommendations for constructing a low-carbon transport system.

Suggested Citation

  • Wang, Kunlun & Zheng, Leven J. & Zhang, Justin Zuopeng & Yao, Hongjiang, 2022. "The impact of promoting new energy vehicles on carbon intensity: Causal evidence from China," Energy Economics, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003966
    DOI: 10.1016/j.eneco.2022.106255
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003966
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. Muhammad Shahbaz & Giray Gozgor & Philip Kofi Adom & Shawkat Hammoudeh, 2019. "The technical decomposition of carbon emissions and the concerns about FDI and trade openness effects in the United States," International Economics, CEPII research center, issue 159, pages 56-73.
    3. Yizhen Gu & Chang Jiang & Junfu Zhang & Ben Zou, 2021. "Subways and Road Congestion," American Economic Journal: Applied Economics, American Economic Association, vol. 13(2), pages 83-115, April.
    4. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    5. Chen, Zhenni & Du, Huibin & Li, Jianglong & Southworth, Frank & Ma, Shoufeng, 2019. "Achieving low-carbon urban passenger transport in China: Insights from the heterogeneous rebound effect," Energy Economics, Elsevier, vol. 81(C), pages 1029-1041.
    6. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    7. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.
    8. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    9. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    10. Lu, Shyi-Min, 2016. "A low-carbon transport infrastructure in Taiwan based on the implementation of energy-saving measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 499-509.
    11. Meng, Lina & Graus, Wina & Worrell, Ernst & Huang, Bo, 2014. "Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime light imagery: Methodological challenges and a ," Energy, Elsevier, vol. 71(C), pages 468-478.
    12. Jayant Sathaye & Andrea Ketof, 1991. "CO2 Emissions from Major Developing Countries: Better Understanding the Role of Energy in the Long Term," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 161-196.
    13. Andersson, Fredrik N.G. & Karpestam, Peter, 2013. "CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity," Energy Policy, Elsevier, vol. 61(C), pages 1285-1294.
    14. Tan, Ruipeng & Tang, Di & Lin, Boqiang, 2018. "Policy impact of new energy vehicles promotion on air quality in Chinese cities," Energy Policy, Elsevier, vol. 118(C), pages 33-40.
    15. Skippon, Stephen M. & Kinnear, Neale & Lloyd, Louise & Stannard, Jenny, 2016. "How experience of use influences mass-market drivers’ willingness to consider a battery electric vehicle: A randomised controlled trial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 26-42.
    16. Stephen P. Holland, Jonathan E. Hughes, Christopher R. Knittel, Nathan C. Parker, 2015. "Unintended Consequences of Carbon Policies: Transportation Fuels, Land-Use, Emissions, and Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    17. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    18. Zhang, Xian & Wang, Ke & Hao, Yu & Fan, Jing-Li & Wei, Yi-Ming, 2013. "The impact of government policy on preference for NEVs: The evidence from China," Energy Policy, Elsevier, vol. 61(C), pages 382-393.
    19. Rogge, Karoline S. & Schleich, Joachim, 2018. "Do policy mix characteristics matter for low-carbon innovation? A survey-based exploration of renewable power generation technologies in Germany," Research Policy, Elsevier, vol. 47(9), pages 1639-1654.
    20. Liu, Changqing & Li, Lei, 2020. "How do subways affect urban passenger transport modes?—Evidence from China," Economics of Transportation, Elsevier, vol. 23(C).
    21. Viard, V. Brian & Fu, Shihe, 2015. "The effect of Beijing's driving restrictions on pollution and economic activity," Journal of Public Economics, Elsevier, vol. 125(C), pages 98-115.
    22. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    23. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    24. Ma, Shao-Chao & Fan, Ying & Feng, Lianyong, 2017. "An evaluation of government incentives for new energy vehicles in China focusing on vehicle purchasing restrictions," Energy Policy, Elsevier, vol. 110(C), pages 609-618.
    25. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
    26. Su, Yongxian & Chen, Xiuzhi & Li, Yong & Liao, Jishan & Ye, Yuyao & Zhang, Hongou & Huang, Ningsheng & Kuang, Yaoqiu, 2014. "China׳s 19-year city-level carbon emissions of energy consumptions, driving forces and regionalized mitigation guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 231-243.
    27. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    28. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    29. Wang, Ning & Pan, Huizhong & Zheng, Wenhui, 2017. "Assessment of the incentives on electric vehicle promotion in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 177-189.
    30. Yang, Zhenbing & Shao, Shuai & Yang, Lili, 2021. "Unintended consequences of carbon regulation on the performance of SOEs in China: The role of technical efficiency," Energy Economics, Elsevier, vol. 94(C).
    31. Ho, Chun-Yu & Wang, Wei & Yu, Jihai, 2018. "International knowledge spillover through trade: A time-varying spatial panel data approach," Economics Letters, Elsevier, vol. 162(C), pages 30-33.
    32. Feng, Tong & Lin, Zhongguo & Du, Huibin & Qiu, Yueming & Zuo, Jian, 2021. "Does low-carbon pilot city program reduce carbon intensity? Evidence from Chinese cities," Research in International Business and Finance, Elsevier, vol. 58(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangjun Chen & Bo Yan, 2024. "Research on jumps and volatility in China’s carbon market," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-43, February.
    2. Xia Li & Yi Peng & Qiqi He & Hongmei He & Song Xue, 2023. "Development of New-Energy Vehicles under the Carbon Peaking and Carbon Neutrality Strategy in China," Sustainability, MDPI, vol. 15(9), pages 1-11, May.
    3. Yue Wang & Yang Wen & Yingying Xu & Lei Shi & Xuan Yang, 2022. "Health Benefits Quantification for New-Energy Vehicles Promotion: A Case Study of Beijing," IJERPH, MDPI, vol. 19(21), pages 1-12, October.
    4. Ren, Maohui & Zhou, Tao & Wang, ChenXi, 2024. "New energy vehicle innovation network, innovation resources agglomeration externalities and energy efficiency: Navigating industry chain innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    5. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    6. Wang, Kunlun & Zheng, Leven J. & Lin, Boqiang, 2024. "Demand-side incentives, competition, and firms’ innovative activities: Evidence from automobile industry in China," Energy Economics, Elsevier, vol. 132(C).
    7. Yihang Zhao & Yuanyuan Zhang & Shengyu Wang, 2024. "Can a Policy Mix Achieve a Collaborative Effect? Exploring the Nested Implementation Process of Urban Carbon Emission Reduction Policies," Sustainability, MDPI, vol. 16(15), pages 1-19, July.
    8. Xu, Chong & Li, Zhiwen & Chen, Boyang & Yang, Qian & An, Jiafu, 2024. "Low-carbon development in China's transportation sector: Multidimensional characteristics and policy implications," Energy, Elsevier, vol. 289(C).
    9. Min Zhao & Yu Fang & Debao Dai, 2023. "Forecast of the Evolution Trend of Total Vehicle Sales and Power Structure of China under Different Scenarios," Sustainability, MDPI, vol. 15(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kunlun & Zheng, Leven J. & Lin, Boqiang, 2024. "Demand-side incentives, competition, and firms’ innovative activities: Evidence from automobile industry in China," Energy Economics, Elsevier, vol. 132(C).
    2. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    3. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    4. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    5. Yongqing Xiong & Shufeng Qin, 2021. "Differences in the effects of China’s new energy vehicle industry policies on market growth from the perspective of policy mix," Energy & Environment, , vol. 32(3), pages 542-561, May.
    6. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    7. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.
    8. Kondev, Bozhil & Dixon, James & Zhou, Zhaoqi & Sabyrbekov, Rahat & Sultanaliev, Kanat & Hirmer, Stephanie A., 2023. "Putting the foot down: Accelerating EV uptake in Kyrgyzstan," Transport Policy, Elsevier, vol. 131(C), pages 87-96.
    9. Peng Cheng & Zhe Ouyang & Yang Liu, 0. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 0, pages 1-20.
    10. Zhang, Tong & Burke, Paul J. & Wang, Qi, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Resource and Energy Economics, Elsevier, vol. 76(C).
    11. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    12. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    13. Lin, Boqiang & Zhu, Runqing, 2022. "How does market-oriented reform influence the rebound effect of China’s mining industry?," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 34-44.
    14. Peng Cheng & Zhe Ouyang & Yang Liu, 2020. "The effect of information overload on the intention of consumers to adopt electric vehicles," Transportation, Springer, vol. 47(5), pages 2067-2086, October.
    15. Jingnan Zhang & Shichun Xu & Zhengxia He & Chengze Li & Xiaona Meng, 2022. "Factors Influencing Adoption Intention for Electric Vehicles under a Subsidy Deduction: From Different City-Level Perspectives," Sustainability, MDPI, vol. 14(10), pages 1-24, May.
    16. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    17. Chen, Qian & Zha, Donglan & Salman, Muhammad, 2022. "The influence of carbon tax on CO2 rebound effect and welfare in Chinese households," Energy Policy, Elsevier, vol. 168(C).
    18. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    19. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    20. Wenbo Li & Ruyin Long & Hong Chen & Baoqi Dou & Feiyu Chen & Xiao Zheng & Zhengxia He, 2020. "Public Preference for Electric Vehicle Incentive Policies in China: A Conjoint Analysis," IJERPH, MDPI, vol. 17(1), pages 1-16, January.

    More about this item

    Keywords

    Carbon intensity; New energy vehicles; Carbon emissions reduction; Subsidy policy;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322003966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.