IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1535-d227231.html
   My bibliography  Save this article

A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency

Author

Listed:
  • Huaming Chen

    (College of Literature and Journalism, Sichuan University, Wangjiang Road No.29, Chengdu 610064, China)

  • Jia Liu

    (College of Literature and Journalism, Sichuan University, Wangjiang Road No.29, Chengdu 610064, China)

  • Ying Li

    (Business School, Sichuan University, Wangjiang Road No. 29, Chengdu 610064, China)

  • Yung-Ho Chiu

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 100, Taiwan)

  • Tai-Yu Lin

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 100, Taiwan)

Abstract

Past research on energy and environmental issues in China has generally focused on energy and environmental efficiencies with no models having included the public health associations or the role of the media. Therefore, to fill this research gap, this paper used a modified Undesirable Dynamic Network model to analyze the efficiency of China’s energy, environment, health and media communications, from which it was found that the urban production efficiency stage was better than the health treatment stage, and that the energy efficiencies across the Chinese regions varied significantly, with only Beijing, Guangzhou, Lhasa and Nanning being found to have high efficiencies. Large urban gaps and low efficiencies were found for health expenditure, with the best performances being found in Fuzhou, Guangzhou, Haikou, Hefei, Nanning, and Urumqi. The regions with the best media communication efficiencies were Fuzhou, Guangzhou, Haikou, Hefei, Lhasa, Nanning and Urumqi, and the cities with the best respiratory disease efficiencies were Fuzhou, Guangzhou, Haikou, Lhasa, Nanning, Wuhan, Urumqi, Xian, and Yinchuan. Overall, significant efficiency improvements were needed in health expenditure and in particular in respiratory diseases as there were major differences across the country.

Suggested Citation

  • Huaming Chen & Jia Liu & Ying Li & Yung-Ho Chiu & Tai-Yu Lin, 2019. "A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency," IJERPH, MDPI, vol. 16(9), pages 1-23, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1535-:d:227231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    4. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    5. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    6. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    9. Song, Ma-Lin & Zhang, Lin-Ling & Liu, Wei & Fisher, Ron, 2013. "Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data," Applied Energy, Elsevier, vol. 112(C), pages 1049-1055.
    10. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    11. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    12. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    13. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    14. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    15. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    16. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    17. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    18. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    19. Dora L. Costa & Matthew E. Kahn, 2017. "Death and the Media: Infectious Disease Reporting During the Health Transition," Economica, London School of Economics and Political Science, vol. 84(335), pages 393-416, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Li & Kaisheng Long, 2019. "Direct or Spillover Effect: The Impact of Pure Technical and Scale Efficiencies of Water Use on Water Scarcity in China," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    2. Qian Wang & Duo Li & Tzu-Han Chang, 2019. "Energy and Health Efficiencies in China with the Inclusion of Technological Innovation," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    3. Ming Zeng & Jiang Du & Weike Zhang, 2019. "Spatial-Temporal Effects of PM 2.5 on Health Burden: Evidence from China," IJERPH, MDPI, vol. 16(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    2. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
    3. Qian Wang & Duo Li & Tzu-Han Chang, 2019. "Energy and Health Efficiencies in China with the Inclusion of Technological Innovation," IJERPH, MDPI, vol. 16(21), pages 1-20, October.
    4. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Energy and Environmental Efficiency in Different Chinese Regions," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    5. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    6. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    7. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    8. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    9. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    10. Cayir Ervural, Beyzanur & Zaim, Selim & Delen, Dursun, 2018. "A two-stage analytical approach to assess sustainable energy efficiency," Energy, Elsevier, vol. 164(C), pages 822-836.
    11. Shixiong Cheng & Jiahui Xie & De Xiao & Yun Zhang, 2019. "Measuring the Environmental Efficiency and Technology Gap of PM 2.5 in China’s Ten City Groups: An Empirical Analysis Using the EBM Meta-Frontier Model," IJERPH, MDPI, vol. 16(4), pages 1-22, February.
    12. Fan, Di & Peng, Bo & Wu, Jianxin & Zhang, ZhongXiang, 2024. "The convergence of total-factor energy efficiency across Chinese cities: A distribution dynamics approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 406-416.
    13. Ying Li & Yung-ho Chiu & Tai-Yu Lin, 2019. "Research on New and Traditional Energy Sources in OECD Countries," IJERPH, MDPI, vol. 16(7), pages 1-21, March.
    14. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    15. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    16. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    17. Xiao-Ning Li & Ying Feng & Pei-Ying Wu & Yung-Ho Chiu, 2021. "An Analysis of Environmental Efficiency and Environmental Pollution Treatment Efficiency in China’s Industrial Sector," Sustainability, MDPI, vol. 13(5), pages 1-25, February.
    18. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    19. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    20. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1535-:d:227231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.