IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v128y2023ics0264837723000546.html
   My bibliography  Save this article

Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain

Author

Listed:
  • Ji, Xi
  • Su, Pinyi
  • Liu, Yifang
  • Wu, Guowei
  • Wu, Xudong

Abstract

This study targets participants of the Forum of China-Africa Cooperation (FOCAC) and aims to comprehensively analyze the arable land use transfer between China and Africa. We apply the multiregional input-output analysis to assess embodied arable land use and depict multifaceted changes of arable land use transfer embodied in the Sino-Africa trade from 1990 to 2015. Results reveal that: (1) China is a net importer of embodied arable land use in the Sino-Africa trade to meet its expanding domestic consumptive demand; the arable land use transfer in the Sino-Africa trade is less than that in EU-Africa and US-Africa trade; (2) there is a decline in the arable land use intensities for both China and Africa and a sharp decrease in the gap between the two intensities since the establishment of FOCAC; (3) the textiles and manufacturing sectors are the two largest contributors to the arable land use transfer from China to Africa, whereas agriculture sector is the largest contributor from Africa to China; (4) the share of China’s arable land use originating from foreign regions increases from 2 % in 1990 to 23 % in 2015; approximately 40 % of arable land resources exploited locally in Africa are for final consumption abroad; China’s arable land use that originates from Africa grows at an average annual rate of 11 %. Our findings affirm the positive effects of the Sino-Africa trade on arable land reallocation, and lend support to optimizing the trade structure in China and Africa in order to maximize usage of arable land resources.

Suggested Citation

  • Ji, Xi & Su, Pinyi & Liu, Yifang & Wu, Guowei & Wu, Xudong, 2023. "Mutual complementarity of arable land use in the Sino-Africa trade: Evidence from the global supply chain," Land Use Policy, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:lauspo:v:128:y:2023:i:c:s0264837723000546
    DOI: 10.1016/j.landusepol.2023.106588
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264837723000546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2023.106588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    2. Ermgassen, Erasmus Klaus Helge Justus zu & Godar, Javier & Lathuillière, Michael J & Löfgren, Pernilla & Vasconcelos, André & Gardner, Toby & Meyfroidt, Patrick, 2020. "The origin, supply chain, and deforestation footprint of Brazil’s beef exports," AgriXiv efg6v, Center for Open Science.
    3. ., 1997. "Embodied Energy and Economic Valuation," Chapters, in: Frontiers in Ecological Economics, chapter 10, pages 103-115, Edward Elgar Publishing.
    4. Wyckoff, Andrew W. & Roop, Joseph M., 1994. "The embodiment of carbon in imports of manufactured products : Implications for international agreements on greenhouse gas emissions," Energy Policy, Elsevier, vol. 22(3), pages 187-194, March.
    5. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    6. Qiang, Wenli & Niu, Shuwen & Liu, Aimin & Kastner, Thomas & Bie, Qiang & Wang, Xiang & Cheng, Shengkui, 2020. "Trends in global virtual land trade in relation to agricultural products," Land Use Policy, Elsevier, vol. 92(C).
    7. Han, Mengyao & Chen, Guoqian, 2018. "Global arable land transfers embodied in Mainland China’s foreign trade," Land Use Policy, Elsevier, vol. 70(C), pages 521-534.
    8. Liu, Xiaoxuan & Yu, Le & Cai, Wenjia & Ding, Qun & Hu, Weixun & Peng, Dailiang & Li, Wei & Zhou, Zheng & Huang, Xiaomeng & Yu, Chaoqing & Gong, Peng, 2021. "The land footprint of the global food trade: Perspectives from a case study of soybeans," Land Use Policy, Elsevier, vol. 111(C).
    9. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    10. Richard Baldwin & Javier Lopez-Gonzalez, 2015. "Supply-chain Trade: A Portrait of Global Patterns and Several Testable Hypotheses," The World Economy, Wiley Blackwell, vol. 38(11), pages 1682-1721, November.
    11. Wu, X.F. & Chen, G.Q., 2019. "Global overview of crude oil use: From source to sink through inter-regional trade," Energy Policy, Elsevier, vol. 128(C), pages 476-486.
    12. Weber, Christopher L. & Peters, Glen P. & Guan, Dabo & Hubacek, Klaus, 2008. "The contribution of Chinese exports to climate change," Energy Policy, Elsevier, vol. 36(9), pages 3572-3577, September.
    13. Ji, Xi & Han, Mengyao & Ulgiati, Sergio, 2020. "Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization," Land Use Policy, Elsevier, vol. 91(C).
    14. Chen, G.Q. & Wu, X.F., 2017. "Energy overview for globalized world economy: Source, supply chain and sink," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 735-749.
    15. Zengkai Zhang & Dabo Guan & Ran Wang & Jing Meng & Heran Zheng & Kunfu Zhu & Huibin Du, 2020. "Embodied carbon emissions in the supply chains of multinational enterprises," Nature Climate Change, Nature, vol. 10(12), pages 1096-1101, December.
    16. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    17. Muradian, Roldan & O'Connor, Martin & Martinez-Alier, Joan, 2002. "Embodied pollution in trade: estimating the 'environmental load displacement' of industrialised countries," Ecological Economics, Elsevier, vol. 41(1), pages 51-67, April.
    18. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    19. Jing Meng & Zhifu Mi & Dabo Guan & Jiashuo Li & Shu Tao & Yuan Li & Kuishuang Feng & Junfeng Liu & Zhu Liu & Xuejun Wang & Qiang Zhang & Steven J. Davis, 2018. "The rise of South–South trade and its effect on global CO2 emissions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    2. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    3. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    4. Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
    5. Ji, Xi & Liu, Yifang & Wu, Guowei & Su, Pinyi & Ye, Zhen & Feng, Kuishuang, 2022. "Global value chain participation and trade-induced energy inequality," Energy Economics, Elsevier, vol. 112(C).
    6. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    7. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    8. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    9. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    10. Zhengyan Liu & Xianqiang Mao & Peng Song, 2017. "GHGs and air pollutants embodied in China’s international trade: Temporal and spatial index decomposition analysis," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-19, April.
    11. Misato Sato, 2014. "Embodied Carbon In Trade: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 831-861, December.
    12. Arto, I. & Rueda-Cantuche, J.M. & Andreoni, V. & Mongelli, I. & Genty, A., 2014. "The game of trading jobs for emissions," Energy Policy, Elsevier, vol. 66(C), pages 517-525.
      • Arto, I. & Rueda-Cantuche, José M. & Dietzenbacher, E. & Andreoni, V. & Mongelli, I. & Genty, A. & Villanueva, A., 2012. "The Game of Trading Jobs for Emissions," Conference papers 332231, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Song, Zhouying & Zhu, Qiaoling & Han, Mengyao, 2021. "Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows," Energy, Elsevier, vol. 217(C).
    14. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    15. Guo, Shan & Jiang, Li & Shen, Geoffrey Q.P., 2019. "Embodied pasture land use change in China 2000-2015: From the perspective of globalization," Land Use Policy, Elsevier, vol. 82(C), pages 476-485.
    16. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    17. Wen Wen & Qi Wang, 2017. "Are Developed Regions in China Achieving Their CO 2 Emissions Reduction Targets on Their Own?—Case of Beijing," Energies, MDPI, vol. 10(12), pages 1-25, November.
    18. Li, Chaohui & Wu, Xudong & Chen, Guoqian & Han, Mengyao & Chen, Kuang & Yangzong, Ciren & Lo, Dan & Alsaedi, Ahmed & Hayat, Tasawar, 2021. "Pastureland use of China: Accounting variations from different input-output analyses," Land Use Policy, Elsevier, vol. 109(C).
    19. Li, Meng & Meng, Bo & Gao, Yuning & Wang, Zhi & Zhang, Yaxiong & Sun, Yongping, 2022. "Tracing CO2 emissions in global value chains: Multinationals vs. domestically-owned firms," Sustainable Global Supply Chains Discussion Papers 2, Research Network Sustainable Global Supply Chains.
    20. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Xiliang, 2014. "Will economic restructuring in China reduce trade-embodied CO2 emissions?," Energy Economics, Elsevier, vol. 42(C), pages 204-212.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:128:y:2023:i:c:s0264837723000546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.