IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i1d10.1007_s13132-023-01183-2.html
   My bibliography  Save this article

Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review

Author

Listed:
  • Yong Qin

    (Sichuan University)

  • Zeshui Xu

    (Sichuan University)

  • Xinxin Wang

    (Sichuan University)

  • Marinko Skare

    (Juraj Dobrila University of Pula)

Abstract

In today’s environment of the rapid rise of artificial intelligence (AI), debate continues about whether it has beneficial effects on economic development. However, there is only a fragmented perception of what role and place AI technology actually plays in economic development (ED). In this paper, we pioneer the research by focusing our detective work and discussion on the intersection of AI and economic development. Specifically, we adopt a two-step methodology. At the first step, we analyze 2211 documents in the AI&ED field using the bibliometric tool Bibliometrix, presenting the internal structure and external characteristics of the field through different metrics and algorithms. In the second step, a qualitative content analysis of clusters calculated from the bibliographic coupling algorithm is conducted, detailing the content directions of recently distributed topics in the AI&ED field from different perspectives. The results of the bibliometric analysis suggest that the number of publications in the field has grown exponentially in recent years, and the most relevant source is the “Sustainability” journal. In addition, deep learning and data mining-related research are the key directions for the future. On the whole, scholars dedicated to the field have developed close cooperation and communication across the board. On the other hand, the content analysis demonstrates that most of the research is centered on the five facets of intelligent decision-making, social governance, labor and capital, Industry 4.0, and innovation. The results provide a forward-looking guide for scholars to grasp the current state and potential knowledge gaps in the AI&ED field.

Suggested Citation

  • Yong Qin & Zeshui Xu & Xinxin Wang & Marinko Skare, 2024. "Artificial Intelligence and Economic Development: An Evolutionary Investigation and Systematic Review," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 1736-1770, March.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-023-01183-2
    DOI: 10.1007/s13132-023-01183-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01183-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01183-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Vivarelli, 2014. "Innovation, Employment and Skills in Advanced and Developing Countries: A Survey of Economic Literature," Journal of Economic Issues, Taylor & Francis Journals, vol. 48(1), pages 123-154.
    2. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    3. Vallaster, Christine & Kraus, Sascha & Merigó Lindahl, José M. & Nielsen, Annika, 2019. "Ethics and entrepreneurship: A bibliometric study and literature review," Journal of Business Research, Elsevier, vol. 99(C), pages 226-237.
    4. Aria, Massimo & Cuccurullo, Corrado, 2017. "bibliometrix: An R-tool for comprehensive science mapping analysis," Journal of Informetrics, Elsevier, vol. 11(4), pages 959-975.
    5. Tang, Xuli & Li, Xin & Ding, Ying & Song, Min & Bu, Yi, 2020. "The pace of artificial intelligence innovations: Speed, talent, and trial-and-error," Journal of Informetrics, Elsevier, vol. 14(4).
    6. Philippe Aghion & Céline Antonin & Simon Bunel, 2019. "Artificial Intelligence, Growth and Employment: The Role of Policy," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 149-164.
    7. Skiba, Marta & Mrówczyńska, Maria & Bazan-Krzywoszańska, Anna, 2017. "Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra," Applied Energy, Elsevier, vol. 188(C), pages 356-366.
    8. Francesca Iandolo & Francesca Loia & Irene Fulco & Chiara Nespoli & Francesco Caputo, 2021. "Combining Big Data and Artificial Intelligence for Managing Collective Knowledge in Unpredictable Environment—Insights from the Chinese Case in Facing COVID-19," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(4), pages 1982-1996, December.
    9. Shiwei He & Rui Song & Sohail S. Chaudhry, 2014. "Service-oriented intelligent group decision support system: Application in transportation management," Information Systems Frontiers, Springer, vol. 16(5), pages 939-951, November.
    10. Kakatkar, Chinmay & Bilgram, Volker & Füller, Johann, 2020. "Innovation analytics: Leveraging artificial intelligence in the innovation process," Business Horizons, Elsevier, vol. 63(2), pages 171-181.
    11. Yong Qin & Xinxin Wang & Zeshui Xu & Marinko Škare, 2021. "The impact of poverty cycles on economic research: evidence from econometric analysis," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 34(1), pages 152-171, January.
    12. Marko Jakšič & Matej Marinč, 2019. "Relationship banking and information technology: the role of artificial intelligence and FinTech," Risk Management, Palgrave Macmillan, vol. 21(1), pages 1-18, March.
    13. Bretas, Vanessa P.G. & Alon, Ilan, 2021. "Franchising research on emerging markets: Bibliometric and content analyses," Journal of Business Research, Elsevier, vol. 133(C), pages 51-65.
    14. Eduard Anton & Thuy Duong Oesterreich & Julian Schuir & Leslie Protz & Frank Teuteberg, 2021. "A Business Model Taxonomy for Start-Ups in the Electric Power Industry — The Electrifying Effect of Artificial Intelligence on Business Model Innovation," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-54, May.
    15. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    16. Xinxin Wang & Yurui Chang & Zeshui Xu & Zidong Wang & Visakan Kadirkamanathan, 2021. "50 Years of international journal of systems science: a review of the past and trends for the future," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(8), pages 1515-1538, June.
    17. Chattopadhyay, Pallavi Banerjee & Rangarajan, R., 2014. "Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 81-91.
    18. Gaur, Ajai & Kumar, Mukesh, 2018. "A systematic approach to conducting review studies: An assessment of content analysis in 25years of IB research," Journal of World Business, Elsevier, vol. 53(2), pages 280-289.
    19. Li, Jingrui & Wang, Rui & Wang, Jianzhou & Li, Yifan, 2018. "Analysis and forecasting of the oil consumption in China based on combination models optimized by artificial intelligence algorithms," Energy, Elsevier, vol. 144(C), pages 243-264.
    20. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    21. Ju, Keyi & Su, Bin & Zhou, Dequn & Zhang, Yuqiang, 2016. "An incentive-oriented early warning system for predicting the co-movements between oil price shocks and macroeconomy," Applied Energy, Elsevier, vol. 163(C), pages 452-463.
    22. Ben Vermeulen & Jan Kesselhut & Andreas Pyka & Pier Paolo Saviotti, 2018. "The Impact of Automation on Employment: Just the Usual Structural Change?," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    23. Elias G. Carayannis & Klitos Christodoulou & Panayiotis Christodoulou & Savvas A. Chatzichristofis & Zinon Zinonos, 2022. "Known Unknowns in an Era of Technological and Viral Disruptions—Implications for Theory, Policy, and Practice," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(1), pages 587-610, March.
    24. Germán González Rodríguez & Jose M. Gonzalez-Cava & Juan Albino Méndez Pérez, 2020. "An intelligent decision support system for production planning based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1257-1273, June.
    25. Jane M. Binner & Alicia M. Gazely & Shu‐Heng Chen & Bin‐Tzong Chie, 2004. "Financial Innovation and Divisia Money in Taiwan: Comparative Evidence from Neural Network and Vector Error‐Correction Forecasting Models," Contemporary Economic Policy, Western Economic Association International, vol. 22(2), pages 213-224, April.
    26. Moll, Jodie & Yigitbasioglu, Ogan, 2019. "The role of internet-related technologies in shaping the work of accountants: New directions for accounting research," The British Accounting Review, Elsevier, vol. 51(6).
    27. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    28. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    29. Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
    30. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation," NBER Working Papers 24449, National Bureau of Economic Research, Inc.
    31. Dwivedi, Yogesh K. & Hughes, D. Laurie & Coombs, Crispin & Constantiou, Ioanna & Duan, Yanqing & Edwards, John S. & Gupta, Babita & Lal, Banita & Misra, Santosh & Prashant, Prakhar & Raman, Ramakrishn, 2020. "Impact of COVID-19 pandemic on information management research and practice: Transforming education, work and life," International Journal of Information Management, Elsevier, vol. 55(C).
    32. Hsin-Ning Su & Pei-Chun Lee, 2010. "Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 65-79, October.
    33. Zhang, Yucheng & Zhang, Meng & Li, Jing & Liu, Guangjian & Yang, Miles M. & Liu, Siqi, 2021. "A bibliometric review of a decade of research: Big data in business research – Setting a research agenda," Journal of Business Research, Elsevier, vol. 131(C), pages 374-390.
    34. Iain M. Cockburn & Rebecca Henderson & Scott Stern, 2018. "The Impact of Artificial Intelligence on Innovation: An Exploratory Analysis," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 115-146, National Bureau of Economic Research, Inc.
    35. repec:hal:spmain:info:hdl:2441/7n49nkmngd8448a5ts5gt5ade0 is not listed on IDEAS
    36. Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Büşra Ayan & Elif Güner & Semen Son-Turan, 2022. "Blockchain Technology and Sustainability in Supply Chains and a Closer Look at Different Industries: A Mixed Method Approach," Logistics, MDPI, vol. 6(4), pages 1-39, December.
    2. S. M. Shamsul Alam & Mohammad Abdul Matin Chowdhury & Dzuljastri Bin Abdul Razak, 2021. "Research evolution in banking performance: a bibliometric analysis," Future Business Journal, Springer, vol. 7(1), pages 1-19, December.
    3. Qin, Yong & Xu, Zeshui & Wang, Xinxin & Škare, Marinko, 2022. "Green energy adoption and its determinants: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Drago, Carlo & Errichiello, Luisa, 2024. "Remote Work admist the Covid-19 outbreak: Insights from an Ensemble Community-Based Keyword Network Analysis," FEEM Working Papers 341640, Fondazione Eni Enrico Mattei (FEEM).
    5. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    6. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    7. Khan, Ashraf & Goodell, John W. & Hassan, M. Kabir & Paltrinieri, Andrea, 2022. "A bibliometric review of finance bibliometric papers," Finance Research Letters, Elsevier, vol. 47(PA).
    8. Zamani, Mehdi & Yalcin, Haydar & Naeini, Ali Bonyadi & Zeba, Gordana & Daim, Tugrul U, 2022. "Developing metrics for emerging technologies: identification and assessment," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    9. Batista-Canino, Rosa M. & Santana-Hernández, Lidia & Medina-Brito, Pino, 2024. "A holistic literature review on entrepreneurial Intention: A scientometric approach," Journal of Business Research, Elsevier, vol. 174(C).
    10. Gricelda Herrera-Franco & Néstor Montalván-Burbano & Carlos Mora-Frank & Lady Bravo-Montero, 2021. "Scientific Research in Ecuador: A Bibliometric Analysis," Publications, MDPI, vol. 9(4), pages 1-34, December.
    11. Antonio Molina-García & Julio Diéguez-Soto & M. Teresa Galache-Laza & Marta Campos-Valenzuela, 2023. "Financial literacy in SMEs: a bibliometric analysis and a systematic literature review of an emerging research field," Review of Managerial Science, Springer, vol. 17(3), pages 787-826, April.
    12. Lingjie Tang & Chang’an Zhang, 2023. "Global Research on International Students’ Intercultural Adaptation in a Foreign Context: A Visualized Bibliometric Analysis of the Scientific Landscape," SAGE Open, , vol. 13(4), pages 21582440231, December.
    13. Yao, Ye & Du, Huibin & Zou, Hongyang & Zhou, Peng & Antunes, Carlos Henggeler & Neumann, Anne & Yeh, Sonia, 2023. "Fifty years of Energy Policy: A bibliometric overview," Energy Policy, Elsevier, vol. 183(C).
    14. Huichen Gao & Shijuan Wang, 2022. "The Intellectual Structure of Research on Rural-to-Urban Migrants: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    15. Qian Wang & Shixian Luo & Jiao Zhang & Katsunori Furuya, 2022. "Increased Attention to Smart Development in Rural Areas: A Scientometric Analysis of Smart Village Research," Land, MDPI, vol. 11(8), pages 1-28, August.
    16. Błoński Krzysztof, 2023. "Analysis of Citations and Co-Citations of the Term ‘Word of Mouth’ Based on Publications in the Field of Social Sciences," Marketing of Scientific and Research Organizations, Sciendo, vol. 48(2), pages 111-133, June.
    17. Goodell, John W. & Kumar, Satish & Lahmar, Oumaima & Pandey, Nitesh, 2023. "A bibliometric analysis of cultural finance," International Review of Financial Analysis, Elsevier, vol. 85(C).
    18. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    19. Pereira, Vijay & Bamel, Umesh & Temouri, Yama & Budhwar, Pawan & Del Giudice, Manlio, 2023. "Mapping the evolution, current state of affairs and future research direction of managing cross-border knowledge for innovation," International Business Review, Elsevier, vol. 32(2).
    20. Bajaj, Vimmy & Kumar, Pawan & Singh, Vipul Kumar, 2022. "Linkage dynamics of sovereign credit risk and financial markets: A bibliometric analysis," Research in International Business and Finance, Elsevier, vol. 59(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:1:d:10.1007_s13132-023-01183-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.