IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v114y2014icp301-309.html
   My bibliography  Save this article

Inflationary effect of coal price change on the Chinese economy

Author

Listed:
  • Chen, Zhan-Ming

Abstract

This study investigates the pass-through effect induced by coal price fluctuations on the Chinese economy 2007–2011 based on a non-competitive input–output model. Three scenarios with different domestic tariff regulation alternatives, i.e., Actual Regulation (AR), No Regulation (NR), and Strong Regulation (SR), are simulated to reflect the effectiveness of different policies. At the sectoral scale, the Coking sector has the largest price variation under all scenarios while agriculture sectors and services sectors are the least sensitive. Nation-level impacts are examined by the weighted price changes of commodities used for different purposes. With the government regulation in reality, about 5% of the GDP deflator and CPI changes as well as 25% of the PPI change over the research period are attributed to coal price increase. Comparison shows the AR scenario brings more stable fluctuations but higher inflation than the NR scenario. The SR scenario confirms that authorities can remarkably relieve short-run inflation by controlling domestic electricity and heat tariffs. The induced inflationary expense sums up to between 0.03% and 0.97% of China’s GDP, around three quarters of which are burdened by investors and foreigners. The quantitative effect investigated in this study can serve as empirical evidence for policy makers regarding inflation control in China.

Suggested Citation

  • Chen, Zhan-Ming, 2014. "Inflationary effect of coal price change on the Chinese economy," Applied Energy, Elsevier, vol. 114(C), pages 301-309.
  • Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:301-309
    DOI: 10.1016/j.apenergy.2013.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cunado, J. & Perez de Gracia, F., 2005. "Oil prices, economic activity and inflation: evidence for some Asian countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(1), pages 65-83, February.
    2. Liao, Hua & Wei, Yi-Ming, 2012. "Will the aggregation approach affect energy efficiency performance assessment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4537-4542.
    3. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    4. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    5. Gay, Philip W. & Proops, John L.R., 1993. "Carbon---dioxide production by the UK economy: An input-output assessment," Applied Energy, Elsevier, vol. 44(2), pages 113-130.
    6. Zhao, X. & Chen, B. & Yang, Z.F., 2009. "National water footprint in an input–output framework—A case study of China 2002," Ecological Modelling, Elsevier, vol. 220(2), pages 245-253.
    7. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
    8. Fu, Feng & Liu, Hongtao & Polenske, Karen R. & Li, Zheng, 2013. "Measuring the energy consumption of China’s domestic investment from 1992 to 2007," Applied Energy, Elsevier, vol. 102(C), pages 1267-1274.
    9. Berument, Hakan & Taşçı, Hakan, 2002. "Inflationary effect of crude oil prices in Turkey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 568-580.
    10. Cunado, Juncal & Perez de Gracia, Fernando, 2003. "Do oil price shocks matter? Evidence for some European countries," Energy Economics, Elsevier, vol. 25(2), pages 137-154, March.
    11. Chen, Shiu-Sheng, 2009. "Oil price pass-through into inflation," Energy Economics, Elsevier, vol. 31(1), pages 126-133, January.
    12. Chen, Z.M. & Chen, G.Q., 2011. "Embodied carbon dioxide emission at supra-national scale: A coalition analysis for G7, BRIC, and the rest of the world," Energy Policy, Elsevier, vol. 39(5), pages 2899-2909, May.
    13. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    14. Apergis, Nicholas & Payne, James E., 2010. "The causal dynamics between coal consumption and growth: Evidence from emerging market economies," Applied Energy, Elsevier, vol. 87(6), pages 1972-1977, June.
    15. Guo, Jie & Zou, Le-Le & Wei, Yi-Ming, 2010. "Impact of inter-sectoral trade on national and global CO2 emissions: An empirical analysis of China and US," Energy Policy, Elsevier, vol. 38(3), pages 1389-1397, March.
    16. Hondo, Hiroki & Sakai, Shinsuke & Tanno, Shiro, 2002. "Sensitivity analysis of total CO2 emission intensities estimated using an input-output table," Applied Energy, Elsevier, vol. 72(3-4), pages 689-704, July.
    17. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    18. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
    19. Chen, Z.M. & Chen, G.Q., 2011. "An overview of energy consumption of the globalized world economy," Energy Policy, Elsevier, vol. 39(10), pages 5920-5928, October.
    20. Su, Bin & Ang, B.W. & Low, Melissa, 2013. "Input–output analysis of CO2 emissions embodied in trade and the driving forces: Processing and normal exports," Ecological Economics, Elsevier, vol. 88(C), pages 119-125.
    21. Fan, Jing-Li & Liao, Hua & Liang, Qiao-Mei & Tatano, Hirokazu & Liu, Chun-Feng & Wei, Yi-Ming, 2013. "Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis," Applied Energy, Elsevier, vol. 101(C), pages 323-332.
    22. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    23. Su, Bin & Ang, B.W., 2011. "Multi-region input–output analysis of CO2 emissions embodied in trade: The feedback effects," Ecological Economics, Elsevier, vol. 71(C), pages 42-53.
    24. Doroodian, K. & Boyd, Roy, 2003. "The linkage between oil price shocks and economic growth with inflation in the presence of technological advances: a CGE model," Energy Policy, Elsevier, vol. 31(10), pages 989-1006, August.
    25. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhan-Ming & Liu, Yu & Qin, Ping & Zhang, Bo & Lester, Leo & Chen, Guanghua & Guo, Yumei & Zheng, Xinye, 2015. "Environmental externality of coal use in China: Welfare effect and tax regulation," Applied Energy, Elsevier, vol. 156(C), pages 16-31.
    2. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    3. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    4. Jingyao Peng & Yidi Sun & Junnian Song & Wei Yang, 2020. "Exploring Potential Pathways toward Energy-Related Carbon Emission Reduction in Heavy Industrial Regions of China: An Input–Output Approach," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Yuhuan Zhao & Song Wang & Jiaqin Yang & Zhonghua Zhang & Ya Liu, 2016. "Input-output analysis of carbon emissions embodied in China-Japan trade," Applied Economics, Taylor & Francis Journals, vol. 48(16), pages 1515-1529, April.
    6. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    7. Zhang, Zengkai & Zhu, Kunfu & Hewings, Geoffrey J.D., 2017. "A multi-regional input–output analysis of the pollution haven hypothesis from the perspective of global production fragmentation," Energy Economics, Elsevier, vol. 64(C), pages 13-23.
    8. Li, J.S. & Chen, G.Q. & Wu, X.F. & Hayat, T. & Alsaedi, A. & Ahmad, B., 2014. "Embodied energy assessment for Macao׳s external trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 642-653.
    9. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    10. Claudiu Tiberiu Albulescu & Cornel Oros & Aviral Kumar Tiwari, 2017. "Oil price–inflation pass-through in Romania during the inflation targeting regime," Applied Economics, Taylor & Francis Journals, vol. 49(15), pages 1527-1542, March.
    11. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    12. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    13. Su, Bin & Ang, B.W., 2013. "Input–output analysis of CO2 emissions embodied in trade: Competitive versus non-competitive imports," Energy Policy, Elsevier, vol. 56(C), pages 83-87.
    14. Sheng, Xin & Marfatia, Hardik A. & Gupta, Rangan & Ji, Qiang, 2023. "The non-linear response of US state-level tradable and non-tradable inflation to oil shocks: The role of oil-dependence," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    16. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    17. Xia, Yan & Fan, Ying & Yang, Cuihong, 2015. "Assessing the impact of foreign content in China’s exports on the carbon outsourcing hypothesis," Applied Energy, Elsevier, vol. 150(C), pages 296-307.
    18. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    19. Hawkins, Jacob & Ma, Chunbo & Schilizzi, Steven & Zhang, Fan, 2015. "Promises and pitfalls in environmentally extended input–output analysis for China: A survey of the literature," Energy Economics, Elsevier, vol. 48(C), pages 81-88.
    20. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:301-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.