IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v258y2020ics0306261919317684.html
   My bibliography  Save this article

Scarcity-weighted fossil fuel footprint of China at the provincial level

Author

Listed:
  • Wang, Heming
  • Wang, Guoqiang
  • Qi, Jianchuan
  • Schandl, Heinz
  • Li, Yumeng
  • Feng, Cuiyang
  • Yang, Xuechun
  • Wang, Yao
  • Wang, Xinzhe
  • Liang, Sai

Abstract

Supply risks and shortages of fossil fuels are major challenges to the sustainable development of countries. In response to this challenge, the 12th main goal of the Sustainable Development Goals emphasizes the importance of sustainable consumption and production patterns for resource (including fossil fuels) sustainability. However, for China, the world's largest energy consumer, the availability and criticality of fossil fuels to economic development have not been studied at sub-national scales. Understanding these can help fossil fuel management and the implementation of policies in different regions. This study is the first to analyse the scarcity-weighted fossil fuel footprint in China at the provincial level for 2012 using an environmentally extended multi-regional input-output model and a newly proposed scarcity evaluation indicator. Using scarcity-weighted indicators allows us to identify supply insecurities that are not revealed when focusing on fossil fuel extraction. The scarcity-weighted fossil fuel indicators identify new critical regions such as Hunan and Hubei. We also find that interprovincial export is a major driver of fossil fuel depletion in less-developed regions (e.g., 83% for Shanxi). This study can help regions in China identify fossil fuel supply risks from the viewpoint of their natural capital endowment and resource depletion in relation to final demand. More importantly, the research findings provide a valuable reference for policymakers when reassessing sustainability not only for fossil fuels but also for other natural resources at multiple scales within and beyond China.

Suggested Citation

  • Wang, Heming & Wang, Guoqiang & Qi, Jianchuan & Schandl, Heinz & Li, Yumeng & Feng, Cuiyang & Yang, Xuechun & Wang, Yao & Wang, Xinzhe & Liang, Sai, 2020. "Scarcity-weighted fossil fuel footprint of China at the provincial level," Applied Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317684
    DOI: 10.1016/j.apenergy.2019.114081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    2. Enrica De Cian & Fabio Sferra & Massimo Tavoni, 2013. "The Influence of Economic Growth, Population, and Fossil Fuel Scarcity on Energy Investments," Working Papers 2013.59, Fondazione Eni Enrico Mattei.
    3. Zhang, B. & Qiao, H. & Chen, Z.M. & Chen, B., 2016. "Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis," Applied Energy, Elsevier, vol. 184(C), pages 1093-1105.
    4. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    5. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    6. Ansari, Dawud, 2016. "Resource curse contagion in the case of Yemen," Resources Policy, Elsevier, vol. 49(C), pages 444-454.
    7. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    8. Heinz Schandl & Marina Fischer‐Kowalski & James West & Stefan Giljum & Monika Dittrich & Nina Eisenmenger & Arne Geschke & Mirko Lieber & Hanspeter Wieland & Anke Schaffartzik & Fridolin Krausmann & S, 2018. "Global Material Flows and Resource Productivity: Forty Years of Evidence," Journal of Industrial Ecology, Yale University, vol. 22(4), pages 827-838, August.
    9. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    10. Chao Bao & Hongjie Wang, 2019. "Trans-Provincial Convergence of per Capita Energy Consumption in Urban China, 1990–2015," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
    11. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    12. O'Mahony, Tadhg & Escardó-Serra, Paula & Dufour, Javier, 2018. "Revisiting ISEW Valuation Approaches: The Case of Spain Including the Costs of Energy Depletion and of Climate Change," Ecological Economics, Elsevier, vol. 144(C), pages 292-303.
    13. Long, Ruyin & Chen, Hong & Li, Huijuan & Wang, Fei, 2013. "Selecting alternative industries for Chinese resource cities based on intra- and inter-regional comparative advantages," Energy Policy, Elsevier, vol. 57(C), pages 82-88.
    14. Joost Vogtländer & David Peck & Dorota Kurowicka, 2019. "The Eco-Costs of Material Scarcity, a Resource Indicator for LCA, Derived from a Statistical Analysis on Excessive Price Peaks," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    15. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    16. Lan, Jun & Malik, Arunima & Lenzen, Manfred & McBain, Darian & Kanemoto, Keiichiro, 2016. "A structural decomposition analysis of global energy footprints," Applied Energy, Elsevier, vol. 163(C), pages 436-451.
    17. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    18. Kim, Jinsoo & Kim, Jihyo, 2015. "Korean public’s perceptions on supply security of fossil fuels: A contingent valuation analysis," Applied Energy, Elsevier, vol. 137(C), pages 301-309.
    19. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    20. Finnveden, Göran & Östlund, Per, 1997. "Exergies of natural resources in life-cycle assessment and other applications," Energy, Elsevier, vol. 22(9), pages 923-931.
    21. Zhang, Chao & Zhong, Lijin & Liang, Sai & Sanders, Kelly T. & Wang, Jiao & Xu, Ming, 2017. "Virtual scarce water embodied in inter-provincial electricity transmission in China," Applied Energy, Elsevier, vol. 187(C), pages 438-448.
    22. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    23. Zhongwu Lu & Heming Wang & Qiang Yue, 2015. "Decoupling Analysis of the Environmental Mountain—with Case Studies from China," Journal of Industrial Ecology, Yale University, vol. 19(6), pages 1082-1090, December.
    24. Jing Meng & Zhifu Mi & Dabo Guan & Jiashuo Li & Shu Tao & Yuan Li & Kuishuang Feng & Junfeng Liu & Zhu Liu & Xuejun Wang & Qiang Zhang & Steven J. Davis, 2018. "The rise of South–South trade and its effect on global CO2 emissions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    25. Zhang, Yanxia & Wang, Haikun & Liang, Sai & Xu, Ming & Liu, Weidong & Li, Shalang & Zhang, Rongrong & Nielsen, Chris P. & Bi, Jun, 2014. "Temporal and spatial variations in consumption-based carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 60-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    2. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    3. Wu, X.D. & Guo, J.L. & Ji, Xi & Chen, G.Q., 2019. "Energy use in world economy from household-consumption-based perspective," Energy Policy, Elsevier, vol. 127(C), pages 287-298.
    4. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    5. Zhong, Qiumeng & Zhang, Zhihe & Wang, Heming & Zhang, Xu & Wang, Yao & Wang, Peng & Ma, Fengmei & Yue, Qiang & Du, Tao & Chen, Wei-Qiang & Liang, Sai, 2023. "Incorporating scarcity into footprints reveals diverse supply chain hotspots for global fossil fuel management," Applied Energy, Elsevier, vol. 349(C).
    6. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
    7. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    8. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    9. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    10. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    11. Dorninger, Christian & Hornborg, Alf & Abson, David J. & von Wehrden, Henrik & Schaffartzik, Anke & Giljum, Stefan & Engler, John-Oliver & Feller, Robert L. & Hubacek, Klaus & Wieland, Hanspeter, 2021. "Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century," Ecological Economics, Elsevier, vol. 179(C).
    12. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    13. Ji, Xi & Han, Mengyao & Ulgiati, Sergio, 2020. "Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization," Land Use Policy, Elsevier, vol. 91(C).
    14. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    15. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    17. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    18. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    19. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    20. Iñigo Capellán-Pérez & David Álvarez-Antelo & Luis J. Miguel, 2019. "Global Sustainability Crossroads : A Participatory Simulation Game to Educate in the Energy and Sustainability Challenges of the 21st Century," Sustainability, MDPI, vol. 11(13), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.