Load forecasting via Grey Model-Least Squares Support Vector Machine model and spatial-temporal distribution of electric consumption intensity
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124468
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jiang, Shan & Zhu, Yongnan & He, Guohua & Wang, Qingming & Lu, Yajing, 2020. "Factors influencing China’s non-residential power consumption: Estimation using the Kaya–LMDI methods," Energy, Elsevier, vol. 201(C).
- Guefano, Serge & Tamba, Jean Gaston & Azong, Tchitile Emmanuel Wilfried & Monkam, Louis, 2021. "Forecast of electricity consumption in the Cameroonian residential sector by Grey and vector autoregressive models," Energy, Elsevier, vol. 214(C).
- Dongxiao Niu & Zhihong Gu, 2011. "An empirical analysis of electricity consumption intensity based on structure factor and efficiency factor," International Journal of Information Technology and Management, Inderscience Enterprises Ltd, vol. 10(1), pages 94-104.
- Carvallo, Juan Pablo & Larsen, Peter H. & Sanstad, Alan H. & Goldman, Charles A., 2018. "Long term load forecasting accuracy in electric utility integrated resource planning," Energy Policy, Elsevier, vol. 119(C), pages 410-422.
- Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
- Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
- Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.
- Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
- Lan-yue, Zhang & Yao, Li & Jing, Zhang & Bing, Luo & Ji-min, He & Shi-huai, Deng & Xin, Huang & ling, Luo & Fei, Shen & Hong, Xiao & Yan-zong, Zhang & Yuan-wei, Li & Li-lin, Wang & Xue-Ping, Yao & Ya-, 2017. "The relationships among energy consumption, economic output and energy intensity of countries at different stage of development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 258-264.
- Kim, Young Se, 2015. "Electricity consumption and economic development: Are countries converging to a common trend?," Energy Economics, Elsevier, vol. 49(C), pages 192-202.
- Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
- Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
- Herrerias, M.J., 2012. "World energy intensity convergence revisited: A weighted distribution dynamics approach," Energy Policy, Elsevier, vol. 49(C), pages 383-399.
- Wang, Yongli & Wang, Shuo & Song, Fuhao & Yang, Jiale & Zhu, Jinrong & Zhang, Fuwei, 2020. "Study on the forecast model of electricity substitution potential in Beijing-Tianjin-Hebei region considering the impact of electricity substitution policies," Energy Policy, Elsevier, vol. 144(C).
- Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
- Zhao, Xueting & Wesley Burnett, J. & Lacombe, Donald J., 2015. "Province-level convergence of China’s carbon dioxide emissions," Applied Energy, Elsevier, vol. 150(C), pages 286-295.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Kaboli, S. Hr. Aghay & Fallahpour, A. & Selvaraj, J. & Rahim, N.A., 2017. "Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming," Energy, Elsevier, vol. 126(C), pages 144-164.
- Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
- Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
- Xie, Wanli & Wu, Wen-Ze & Liu, Chong & Zhao, Jingjie, 2020. "Forecasting annual electricity consumption in China by employing a conformable fractional grey model in opposite direction," Energy, Elsevier, vol. 202(C).
- Song, Wanqing & Cattani, Carlo & Chi, Chi-Hung, 2020. "Multifractional Brownian motion and quantum-behaved particle swarm optimization for short term power load forecasting: An integrated approach," Energy, Elsevier, vol. 194(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rao, Yanchun & Wang, Xiuli & Li, Hengkai, 2024. "Forecasting electricity consumption in China's Pearl River Delta urban agglomeration under the optimal economic growth path with low-carbon goals: Based on data of NPP-VIIRS-like nighttime light," Energy, Elsevier, vol. 294(C).
- Wang, Han & Yan, Jie & Zhang, Jiawei & Liu, Shihua & Liu, Yongqian & Han, Shuang & Qu, Tonghui, 2024. "Short-term integrated forecasting method for wind power, solar power, and system load based on variable attention mechanism and multi-task learning," Energy, Elsevier, vol. 304(C).
- Carlos Benavides & Sebastián Gwinner & Andrés Ulloa & José Barrales-Ruiz & Vicente Sepúlveda & Manuel Díaz, 2024. "Bus Basis Model Applied to the Chilean Power System: A Detailed Look at Chilean Electric Demand," Energies, MDPI, vol. 17(14), pages 1-28, July.
- Tian, Zhirui & Liu, Weican & Jiang, Wenqian & Wu, Chenye, 2024. "CNNs-Transformer based day-ahead probabilistic load forecasting for weekends with limited data availability," Energy, Elsevier, vol. 293(C).
- Xin Zhao & Qiushuang Li & Wanlei Xue & Yihang Zhao & Huiru Zhao & Sen Guo, 2022. "Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price and Window-Based XGBoost Model," Energies, MDPI, vol. 15(19), pages 1-11, October.
- Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Castellanos-Sosa, Francisco A. & Cabral, René & Mollick, André Varella, 2022. "Energy reform and energy consumption convergence in Mexico: A spatial approach," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 336-350.
- Romero-Ávila, Diego & Omay, Tolga, 2022. "Convergence of per capita energy consumption around the world: New evidence from nonlinear panel unit root tests," Energy Economics, Elsevier, vol. 111(C).
- Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
- Taştan, Hüseyin & Yıldız, Hakan, 2023. "Club convergence analysis of city-level electricity consumption in Turkey," Energy, Elsevier, vol. 265(C).
- Chao Bao & Hongjie Wang, 2019. "Trans-Provincial Convergence of per Capita Energy Consumption in Urban China, 1990–2015," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
- Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
- Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
- Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
- Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
- Liu, Tie-Ying & Lee, Chien-Chiang, 2020. "Convergence of the world’s energy use," Resource and Energy Economics, Elsevier, vol. 62(C).
- Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
- Michał Gostkowski & Tomasz Rokicki & Luiza Ochnio & Grzegorz Koszela & Kamil Wojtczuk & Marcin Ratajczak & Hubert Szczepaniuk & Piotr Bórawski & Aneta Bełdycka-Bórawska, 2021. "Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group," Energies, MDPI, vol. 14(18), pages 1-25, September.
- Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
- González Grandón, T. & Schwenzer, J. & Steens, T. & Breuing, J., 2024. "Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine," Applied Energy, Elsevier, vol. 355(C).
- Hisham Alghamdi & Ghulam Hafeez & Sajjad Ali & Safeer Ullah & Muhammad Iftikhar Khan & Sadia Murawwat & Lyu-Guang Hua, 2023. "An Integrated Model of Deep Learning and Heuristic Algorithm for Load Forecasting in Smart Grid," Mathematics, MDPI, vol. 11(21), pages 1-22, November.
- Parker, Steven & Liddle, Brant, 2017. "Analysing energy productivity dynamics in the OECD manufacturing sector," Energy Economics, Elsevier, vol. 67(C), pages 91-97.
- Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
- Mateusz Jankiewicz, 2021. "The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach," Energies, MDPI, vol. 14(24), pages 1-15, December.
- Chuanhui Zuo & Jialong Wang & Mingping Liu & Suhui Deng & Qingnian Wang, 2023. "An Ensemble Framework for Short-Term Load Forecasting Based on TimesNet and TCN," Energies, MDPI, vol. 16(14), pages 1-17, July.
More about this item
Keywords
Electric load forecasting; Grey model-least squares support vector machine; Particle swarm optimization; Electric consumption intensity; Spatial-temporal distribution; α convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222013718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.