IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v80y2022ics0038012121001439.html
   My bibliography  Save this article

What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach

Author

Listed:
  • Xia, Yin-Shuang
  • Sun, Lu-Xuan
  • Feng, Chao

Abstract

This paper proposes a new index to measure the spatial carbon intensity inequality. To further explore factors causing the inequalities of carbon intensity, meta-frontier DEA-based decomposition approach is used in this study. Using this method, carbon intensity inequality of China's transport sector from 2004 to 2018 were decomposed into nine factors, including two newly proposed technological gap factors. Study shows that: (1) there are spatial inequalities in carbon intensity of China's transport sector, which peaked in 2009 and then decreased; (2) potential energy intensity, production technology gap, and production technology contributed the most to spatial inequalities of low-carbon development in Chinas transport sector, followed by pure production efficiency and energy structure. Energy-saving technology, energy technology gap, and pure energy efficiency contributed have relatively little impacts; and (3) production technology gap is the determinant factor for the transport carbon intensity inequality between eastern and western regions. The proposed approach can also be used for many other similar low-carbon development studies.

Suggested Citation

  • Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001439
    DOI: 10.1016/j.seps.2021.101151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121001439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huaping Sun & Lingxiang Hu & Yong Geng & Guangchuan Yang, 2020. "Uncovering impact factors of carbon emissions from transportation sector: evidence from China’s Yangtze River Delta Area," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1423-1437, October.
    2. Xianzhao Liu & Xu Yang & Ruoxin Guo, 2020. "Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
    3. Wei Li & Hao Li & Huixia Zhang & Shuang Sun, 2016. "The Analysis of CO 2 Emissions and Reduction Potential in China’s Transport Sector," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-12, January.
    4. Zhang, Fan & Deng, Xiangzheng & Phillips, Fred & Fang, Chuanglin & Wang, Chao, 2020. "Impacts of industrial structure and technical progress on carbon emission intensity: Evidence from 281 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Gradín, Carlos & Wu, Binbin, 2020. "Income and consumption inequality in China: A comparative approach with India," China Economic Review, Elsevier, vol. 62(C).
    7. Duangkamon Chotikapanich & William E Griffiths & D.S. Prasada Rao & Vicar Valencia, 2009. "Global Income Distribution and Inequality: 1993 and 2000," Department of Economics - Working Papers Series 1062, The University of Melbourne.
    8. Elena Meschi & Francesco Scervini, 2014. "Expansion of schooling and educational inequality in Europe: the educational Kuznets curve revisited," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 660-680.
    9. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    10. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    11. Tian, Kailan & Dietzenbacher, Erik & Yan, Bingqian & Duan, Yuwan, 2020. "Upgrading or downgrading: China's regional carbon emission intensity evolution and its determinants," Energy Economics, Elsevier, vol. 91(C).
    12. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    13. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    14. Liu, Nan & Ma, Zujun & Kang, Jidong, 2015. "Changes in carbon intensity in China's industrial sector: Decomposition and attribution analysis," Energy Policy, Elsevier, vol. 87(C), pages 28-38.
    15. Yang, Jun & Hao, Yun & Feng, Chao, 2021. "A race between economic growth and carbon emissions: What play important roles towards global low-carbon development?," Energy Economics, Elsevier, vol. 100(C).
    16. Aye Thu Zar Thein & Takahiro Akita, 2019. "Education and expenditure inequality in Myanmar: An analysis with the 2006 and 2012 Household Income and Expenditure Survey in an urban and rural setting," Regional Science Policy & Practice, Wiley Blackwell, vol. 11(1), pages 55-70, March.
    17. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    18. Jianping Zha & Ting Tan & Wenwen Yuan & Xiaojie Yang & Ying Zhu, 2020. "Decomposition analysis of tourism CO2 emissions for sustainable development: A case study of China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 169-186, January.
    19. Aekapol Chongvilaivan & Jungsuk Kim, 2016. "Individual Income Inequality and Its Drivers in Indonesia: A Theil Decomposition Reassessment," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 126(1), pages 79-98, March.
    20. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    21. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    22. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    23. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    24. Bin Zhou & Stephan Thies & Ramana Gudipudi & Matthias K B Lüdeke & Jürgen P Kropp & Diego Rybski, 2020. "A Gini approach to spatial CO2 emissions," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    25. Bogdan Oancea & Dan Pirjol, 2019. "Extremal properties of the Theil and Gini measures of inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 859-869, March.
    26. Krishna Malakar & Trupti Mishra & Anand Patwardhan, 2018. "Inequality in water supply in India: an assessment using the Gini and Theil indices," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(2), pages 841-864, April.
    27. Liu, Jiaguo & Li, Sujuan & Ji, Qiang, 2021. "Regional differences and driving factors analysis of carbon emission intensity from transport sector in China," Energy, Elsevier, vol. 224(C).
    28. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    29. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    30. Wanbei Jiang & Weidong Liu, 2020. "Provincial-Level CO 2 Emissions Intensity Inequality in China: Regional Source and Explanatory Factors of Interregional and Intraregional Inequalities," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    31. Yu, Yantuan & Zhang, Ning, 2021. "Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 96(C).
    32. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    33. Juan Wang & Tao Zhao & Xianshuo Xu & Xiaohu Zhang, 2016. "Exploring the changes of energy-related carbon intensity in China: an extended Divisia index decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 501-521, August.
    34. Guo, Bin & Geng, Yong & Franke, Bernd & Hao, Han & Liu, Yaxuan & Chiu, Anthony, 2014. "Uncovering China’s transport CO2 emission patterns at the regional level," Energy Policy, Elsevier, vol. 74(C), pages 134-146.
    35. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    36. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "Does financial inclusion achieve the dual dividends of narrowing carbon inequality within cities and between cities? Empirical evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    2. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2024. "Congestion effects of energy and its influencing factors: China's transportation sector," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    3. Tian, Ying & Pang, Jun, 2023. "What causes dynamic change of green technology progress: Convergence analysis based on industrial restructuring and environmental regulation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 189-199.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rongrong & Han, Xinyu & Wang, Qiang, 2023. "Do technical differences lead to a widening gap in China's regional carbon emissions efficiency? Evidence from a combination of LMDI and PDA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    2. Liu, Nan & Ma, Zujun & Kang, Jidong & Su, Bin, 2019. "A multi-region multi-sector decomposition and attribution analysis of aggregate carbon intensity in China from 2000 to 2015," Energy Policy, Elsevier, vol. 129(C), pages 410-421.
    3. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    4. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    6. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    7. Goh, Tian & Zhong, Sheng & Ang, B.W. & Su, Bin & Ng, Szu Hui & Chai, Kah-Hin, 2021. "Driving factors of changes in international maritime energy consumption: Microdata evidence 2014–2017," Energy Policy, Elsevier, vol. 154(C).
    8. Ang, B.W. & Su, Bin & Wang, H., 2016. "A spatial–temporal decomposition approach to performance assessment in energy and emissions," Energy Economics, Elsevier, vol. 60(C), pages 112-121.
    9. Yu, Ying & Dai, Yuqi & Xu, Linyu & Zheng, Hanzhong & Wu, Wenhao & Chen, Lei, 2023. "A multi-level characteristic analysis of urban agglomeration energy-related carbon emission: A case study of the Pearl River Delta," Energy, Elsevier, vol. 263(PB).
    10. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    11. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    12. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    13. Liu, Xiao & Hang, Ye & Wang, Qunwei & Chiu, Ching-Ren & Zhou, Dequn, 2022. "The role of energy consumption in global carbon intensity change: A meta-frontier-based production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 109(C).
    14. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    15. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Meng, Bo, 2021. "Attribution of changes in an intensity index," Energy, Elsevier, vol. 216(C).
    16. Juan Wang & Tao Zhao & Xiaohu Zhang, 2017. "Changes in carbon intensity of China’s energy-intensive industries: a combined decomposition and attribution analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1655-1675, September.
    17. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    18. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    19. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    20. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.