IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3408-d263897.html
   My bibliography  Save this article

District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration

Author

Listed:
  • Si Chen

    (James Watt School of Engineering, the University of Glasgow, Glasgow G12 8QQ, UK)

  • Daniel Friedrich

    (School of Engineering, the University of Edinburgh, Edinburgh EH9 3FB, UK)

  • Zhibin Yu

    (James Watt School of Engineering, the University of Glasgow, Glasgow G12 8QQ, UK)

  • James Yu

    (SP Distribution PLC, Glasgow G72 0HT, UK)

Abstract

Heat demand of a district heating network needs to be accurately predicted and managed to reduce consumption and emissions. Detailed thermal parameters are essential for predictions using physics-based energy models, but they are not always available or sufficiently accurate. To reduce the simulation time in calibration and the dependency of accurate data of buildings, this paper develops a prediction approach using a building energy model whose parameters are calibrated by Bayesian-based calibration method to match the recorded data of monthly heat demand. In the proposed calibration approach, an emulator is established to evaluate the untested values of thermal parameters using Bayesian method, and then use the evaluation results to search for the most suitable parameters value. The designed approach greatly accelerates the calibration speed. The method is used to calibrate a single parameter and multiple parameters of the building thermal energy models for a district heating network. After it has been verified with measured data, the developed calibration method is used to calibrate parameters of building energy models. The output of the calibrated model can predict the hourly building heat demand in district heating networks.

Suggested Citation

  • Si Chen & Daniel Friedrich & Zhibin Yu & James Yu, 2019. "District Heating Network Demand Prediction Using a Physics-Based Energy Model with a Bayesian Approach for Parameter Calibration," Energies, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3408-:d:263897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    2. Ioannis Andrianakis & Ian R Vernon & Nicky McCreesh & Trevelyan J McKinley & Jeremy E Oakley & Rebecca N Nsubuga & Michael Goldstein & Richard G White, 2015. "Bayesian History Matching of Complex Infectious Disease Models Using Emulation: A Tutorial and a Case Study on HIV in Uganda," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-18, January.
    3. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    4. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    5. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    6. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    7. Yang, S. & Pilet, T.J. & Ordonez, J.C., 2018. "Volume element model for 3D dynamic building thermal modeling and simulation," Energy, Elsevier, vol. 148(C), pages 642-661.
    8. Yan, Ding & Zhe, Tian & Yong, Wu & Neng, Zhu, 2011. "Achievements and suggestions of heat metering and energy efficiency retrofit for existing residential buildings in northern heating regions of China," Energy Policy, Elsevier, vol. 39(9), pages 4675-4682, September.
    9. Yang, Zheng & Becerik-Gerber, Burcin, 2015. "A model calibration framework for simultaneous multi-level building energy simulation," Applied Energy, Elsevier, vol. 149(C), pages 415-431.
    10. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    11. Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Millar, Michael-Allan & Yu, Zhibin & Burnside, Neil & Jones, Greg & Elrick, Bruce, 2021. "Identification of key performance indicators and complimentary load profiles for 5th generation district energy networks," Applied Energy, Elsevier, vol. 291(C).
    2. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
    3. Hou, D. & Hassan, I.G. & Wang, L., 2021. "Review on building energy model calibration by Bayesian inference," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaudhary, Gaurav & New, Joshua & Sanyal, Jibonananda & Im, Piljae & O’Neill, Zheng & Garg, Vishal, 2016. "Evaluation of “Autotune” calibration against manual calibration of building energy models," Applied Energy, Elsevier, vol. 182(C), pages 115-134.
    2. Na, Wei & Wang, Mingming, 2022. "A Bayesian approach with urban-scale energy model to calibrate building energy consumption for space heating: A case study of application in Beijing," Energy, Elsevier, vol. 247(C).
    3. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    4. Ramos Ruiz, Germán & Fernández Bandera, Carlos, 2017. "Analysis of uncertainty indices used for building envelope calibration," Applied Energy, Elsevier, vol. 185(P1), pages 82-94.
    5. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    6. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    7. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    8. Glasgo, Brock & Hendrickson, Chris & Azevedo, Inês Lima, 2017. "Assessing the value of information in residential building simulation: Comparing simulated and actual building loads at the circuit level," Applied Energy, Elsevier, vol. 203(C), pages 348-363.
    9. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    10. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    11. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    12. Chaitanya Kaligotla & Jonathan Ozik & Nicholson Collier & Charles M. Macal & Kelly Boyd & Jennifer Makelarski & Elbert S. Huang & Stacy T. Lindau, 2020. "Model Exploration of an Information-Based Healthcare Intervention Using Parallelization and Active Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-1.
    13. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    14. Jackson Samuel E. & Vernon Ian & Liu Junli & Lindsey Keith, 2020. "Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(2), pages 1-33, April.
    15. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    16. Jordan Higgins & Aditya Ramnarayan & Roxana Family & Michael Ohadi, 2024. "Analysis of Energy Efficiency Opportunities for a Public Transportation Maintenance Facility—A Case Study," Energies, MDPI, vol. 17(8), pages 1-20, April.
    17. Glasgo, Brock & Khan, Nyla & Azevedo, Inês Lima, 2020. "Simulating a residential building stock to support regional efficiency policy," Applied Energy, Elsevier, vol. 261(C).
    18. Calama-González, Carmen María & Symonds, Phil & Petrou, Giorgos & Suárez, Rafael & León-Rodríguez, Ángel Luis, 2021. "Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring," Applied Energy, Elsevier, vol. 282(PA).
    19. Yuan, Jun & Nian, Victor & He, Junliang & Yan, Wei, 2019. "Cost-effectiveness analysis of energy efficiency measures for maritime shipping using a metamodel based approach with different data sources," Energy, Elsevier, vol. 189(C).
    20. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3408-:d:263897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.