IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p439-d1020485.html
   My bibliography  Save this article

Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model

Author

Listed:
  • Di Peng

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Haibin Liu

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

Abstract

As the top emitter of carbon dioxide worldwide, China faces a considerable challenge in reducing carbon emissions to combat global warming. Carbon emissions from coal consumption is the primary source of carbon dioxide emissions in China. The decomposition of the driving factors and the quantification of regions and industries needs further research. Thus, this paper decomposed five driving factors affecting carbon emissions from coal consumption in China, namely, carbon emission intensity, energy structure, energy intensity, economic output, and population scale, by constructing a Kaya-Logarithmic Mean Divisia Index (Kaya-LMDI) decomposition model with data on coal consumption in China from 1997 to 2019. It was revealed that the economic output and energy intensity effects are major drivers and inhibitors of carbon emissions from coal consumption in China, respectively. The contribution and impact of these driving factors on carbon emissions from coal consumption were analyzed for different regions and industrial sectors. The results showed that carbon emissions from coal consumption increased by 3211.92 million tons from 1997 to 2019. From a regional perspective, Hebei Province has the most significant impact on carbon emissions from coal consumption due to the effect of economic output. Additionally, the industrial sector had the most pronounced influence on carbon emissions from coal consumption due to the economic output effect. Finally, a series of measures to reduce carbon emissions including controlling the total coal consumption, improving the utilization rate of clean energy, and optimizing the energy structure is proposed based on China’s actual development.

Suggested Citation

  • Di Peng & Haibin Liu, 2022. "Measurement and Driving Factors of Carbon Emissions from Coal Consumption in China Based on the Kaya-LMDI Model," Energies, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:439-:d:1020485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    2. Zhang, F. Q. & Ang, B. W., 2001. "Methodological issues in cross-country/region decomposition of energy and environment indicators," Energy Economics, Elsevier, vol. 23(2), pages 179-190, March.
    3. Shining Zhang & Fang Yang & Changyi Liu & Xing Chen & Xin Tan & Yuanbing Zhou & Fei Guo & Weiyi Jiang, 2020. "Study on Global Industrialization and Industry Emission to Achieve the 2 °C Goal Based on MESSAGE Model and LMDI Approach," Energies, MDPI, vol. 13(4), pages 1-21, February.
    4. Katarzyna Aleksandra Wójtowicz & Jolanta Małgorzata Szołno-Koguc & Jan Braun, 2021. "The Role of Public Spending in CO 2 Emissions Reduction in Polish Regions: An LMDI Decomposition Approach," Energies, MDPI, vol. 15(1), pages 1-21, December.
    5. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    6. Chen, Jiandong & Wang, Ping & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2018. "Decomposition and decoupling analysis of CO2 emissions in OECD," Applied Energy, Elsevier, vol. 231(C), pages 937-950.
    7. Kristiāna Dolge & Dagnija Blumberga, 2021. "Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis," Energies, MDPI, vol. 14(23), pages 1-23, November.
    8. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    9. Tian Zhao & Zhixin Liu, 2022. "Drivers of CO 2 Emissions: A Debt Perspective," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    10. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    11. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    12. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Li & Yanan Zheng & Guan Gong & Hongtao Guo, 2023. "A Simulation Study on Peak Carbon Emission of Public Buildings—In the Case of Henan Province, China," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kong & Xianzhong, Mu & Guangwen, Hu, 2021. "A decomposing analysis of productive and residential energy consumption in Beijing," Energy, Elsevier, vol. 226(C).
    2. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    3. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    4. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    5. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    6. Eskander, Shaikh M.S.U. & Nitschke, Jakob, 2021. "Energy use and CO2 emissions in the UK universities: an extended Kaya identity analysis," LSE Research Online Documents on Economics 110764, London School of Economics and Political Science, LSE Library.
    7. Tang, Songlin & Raza, Muhammad Yousaf & Lin, Boqiang, 2024. "Analysis of coal-related energy consumption, economic growth and intensity effects in Pakistan," Energy, Elsevier, vol. 292(C).
    8. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.
    9. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    10. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    11. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    12. Changjian Wang & Fei Wang & Gengzhi Huang & Yang Wang & Xinlin Zhang & Yuyao Ye & Xiaojie Lin & Zhongwu Zhang, 2021. "Examining the Dynamics and Determinants of Energy Consumption in China’s Megacity Based on Industrial and Residential Perspectives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    13. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    14. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry," Resources Policy, Elsevier, vol. 59(C), pages 487-494.
    15. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    16. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    17. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    18. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    19. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    20. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:439-:d:1020485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.