IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i4p1402-d320526.html
   My bibliography  Save this article

Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China

Author

Listed:
  • Ya Chen

    (School of Economics, Hefei University of Technology, Hefei 230601, China
    Center for Industrial information and Economy, Hefei University of Technology, Hefei 230601, China)

  • Wei Xu

    (School of Economics, Hefei University of Technology, Hefei 230601, China)

  • Qian Zhou

    (School of Shanghai Development & Institute of Free Trade Zone, Shanghai University of Finance & Economics, Shanghai 200433, China)

  • Zhixiang Zhou

    (School of Economics, Hefei University of Technology, Hefei 230601, China
    Center for Industrial information and Economy, Hefei University of Technology, Hefei 230601, China)

Abstract

The phenomena of “large energy consumption, high carbon emission, and serious environmental pollution” are against the goals of “low energy consumption, low emissions” in China’s industrial sector. The key to solving the problem lies in improving total factor energy efficiency (TFEE) and carbon emission efficiency (TFCE). Considering the heterogeneity of different sub-industries, this paper proposes a three-stage global meta-frontier slacks-based measure (GMSBM) method for measuring TFEE and TFCE, as well as the technology gap by combining meta-frontier technology with slacks-based measure (SBM) using data envelopment analysis (DEA). DEA can effectively avoid the situation where the technology gap ratio (TGR) is larger than unity. This paper uses the three-stage method to empirically analyze TFEE and TFCE of Anhui’s 38 industrial sub-industries in China from 2012 to 2016. The main findings are as follows: (1) Anhui’s industrial sector has low TFEE and TFCE, which has great potential for improvement. (2) TFEE and TFCE of light industry are lower than those of heavy industry under group-frontier, while they are higher than those of heavy industry under meta-frontier. There is a big gap in TFEE and TFCE among sub-industries of light industry. Narrowing the gap among different sub-industries of light industry is conducive to the overall improvement in TFEE and TFCE. (3) The TGR of light industry is significantly higher than that of heavy industry, indicating that there are sub-industries with the most advanced energy use and carbon emission technologies in light industry. And there is a bigger carbon-emitting technology gap in heavy industry, so it needs to encourage technology spillover from light industry to heavy industry. (4) The total performance loss of industrial sub-industries in Anhui mainly comes from management inefficiency, so it is necessary to improve management and operational ability. Based on the findings, some policy implications are proposed.

Suggested Citation

  • Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1402-:d:320526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/4/1402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/4/1402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    2. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    3. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    4. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    5. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    6. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    7. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    8. Li, Ke & Lin, Boqiang, 2015. "The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors," Energy, Elsevier, vol. 86(C), pages 403-413.
    9. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    10. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    11. Beatriz Junquera & Virginia Barba-Sánchez, 2018. "Environmental Proactivity and Firms’ Performance: Mediation Effect of Competitive Advantages in Spanish Wineries," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    12. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    13. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    14. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    15. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    16. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    17. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    18. Xiaoli, Zhao & Rui, Yang & Qian, Ma, 2014. "China's total factor energy efficiency of provincial industrial sectors," Energy, Elsevier, vol. 65(C), pages 52-61.
    19. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    20. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    21. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    22. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    23. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    24. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    25. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    26. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    27. Virginia Barba-Sánchez & Carlos Atienza-Sahuquillo, 2016. "Environmental Proactivity and Environmental and Economic Performance: Evidence from the Winery Sector," Sustainability, MDPI, vol. 8(10), pages 1-15, October.
    28. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, December.
    29. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
    30. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanxin Peng & Zhuo Chen & Jay Lee, 2020. "Dynamic Convergence of Green Total Factor Productivity in Chinese Cities," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    2. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    3. Ying Chen & Suran Li & Long Cheng, 2020. "Evaluation of Cultivated Land Use Efficiency with Environmental Constraints in the Dongting Lake Eco-Economic Zone of Hunan Province, China," Land, MDPI, vol. 9(11), pages 1-15, November.
    4. Yang Yu & Jun Nie & Atif Jahanger, 2024. "An Evaluation of the Energy-Related Carbon Dioxide Emissions From China’s Light Sector to Achieve Sustainable Development Goals," Evaluation Review, , vol. 48(1), pages 7-31, February.
    5. Yu, Ming-Miin & See, Kok Fong & Hsiao, Bo, 2022. "Integrating group frontier and metafrontier directional distance functions to evaluate the efficiency of production units," European Journal of Operational Research, Elsevier, vol. 301(1), pages 254-276.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    2. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    3. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    4. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    5. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    6. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    8. Feng, Chao & Wang, Miao, 2018. "Analysis of energy efficiency in China's transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 565-575.
    9. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    10. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    11. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Zhencheng Xing & Jigan Wang & Jie Zhang, 2017. "CO 2 Emission Performance, Mitigation Potential, and Marginal Abatement Cost of Industries Covered in China’s Nationwide Emission Trading Scheme: A Meta-Frontier Analysis," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    13. Chen, Ya & Pan, Yongbin & Wang, Mengyuan & Ding, Tao & Zhou, Zhixiang & Wang, Ke, 2023. "How do industrial sectors contribute to carbon peaking and carbon neutrality goals? A heterogeneous energy efficiency analysis for Beijing," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 67-80.
    14. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    15. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    16. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    17. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    18. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    19. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    20. Guoping Mei & Jingyi Gan & Ning Zhang, 2015. "Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure," Sustainability, MDPI, vol. 7(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:4:p:1402-:d:320526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.