IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924014636.html
   My bibliography  Save this article

Continuous model calibration framework for smart-building digital twin: A generative model-based approach

Author

Listed:
  • Eneyew, Dagimawi D.
  • Capretz, Miriam A.M.
  • Bitsuamlak, Girma T.

Abstract

Smart building digital twins represent a significant paradigm shift to optimize building operations, thereby reducing their substantial energy consumption and emissions through digitalization. The objective is to virtually replicate existing buildings’ static and dynamic aspects, leveraging data, information, and models spanning the entire life cycle. The virtual replica can then be employed for intelligent functions, including real-time monitoring, autonomous control, and proactive decision-making to optimize building operations. To enable proactive decisions, models within the digital twin must continually evolve with changes in the physical building, aligning their outputs with real-time measurements through calibration. This continuous updating requires real-time physical measurements of model inputs. However, challenges arise in the uncertain conditions of buildings marked by sensor absence, malfunctions, and inherent limitations in measuring certain variables. This study introduces a novel calibration framework for physics-based models, addressing the challenges of continuous model calibration in smart-building digital twins while considering the uncertain environment of physical buildings. Within this framework, a novel generative model-based architecture is proposed. This architecture enables a fast and scalable solution while quantifying uncertainty for reliable calibration. Furthermore, a continuous model calibration procedure is presented based on a pre-trained generative calibrator model. A comprehensive evaluation was conducted via a case study employing a building energy model and multiple experiments. The experimental results demonstrated that the proposed framework effectively addresses the challenges of continuous model calibration in smart-building digital twins. The calibrator model accurately quantified uncertainties in its predictions and solved a single calibration problem in an average time of 0.043 second. For facility-level electricity consumption, Coefficient of Variation Root Mean Squared Error (CVRMSE) values of 6.33%, 10.18%, and 10.97% were achieved under conditions of observations without noise or missing data, with noise, and with noise and missing data, respectively. Similarly, for facility-level gas consumption, the corresponding values were 18.75%, 20.53%, and 20.7%. The CVRMSE scores in both cases met the standard hourly thresholds for building energy model calibration.

Suggested Citation

  • Eneyew, Dagimawi D. & Capretz, Miriam A.M. & Bitsuamlak, Girma T., 2024. "Continuous model calibration framework for smart-building digital twin: A generative model-based approach," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014636
    DOI: 10.1016/j.apenergy.2024.124080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924014636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nagpal, Shreshth & Hanson, Jared & Reinhart, Christoph, 2019. "A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking," Applied Energy, Elsevier, vol. 241(C), pages 82-97.
    2. Shuangshuang Chen & Wei Guo, 2023. "Auto-Encoders in Deep Learning—A Review with New Perspectives," Mathematics, MDPI, vol. 11(8), pages 1-54, April.
    3. Chen, Jianli & Gao, Xinghua & Hu, Yuqing & Zeng, Zhaoyun & Liu, Yanan, 2019. "A meta-model-based optimization approach for fast and reliable calibration of building energy models," Energy, Elsevier, vol. 188(C).
    4. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    5. Østergård, Torben & Jensen, Rasmus Lund & Maagaard, Steffen Enersen, 2018. "A comparison of six metamodeling techniques applied to building performance simulations," Applied Energy, Elsevier, vol. 211(C), pages 89-103.
    6. Zhang, Qiang & Tian, Zhe & Ma, Zhijun & Li, Genyan & Lu, Yakai & Niu, Jide, 2020. "Development of the heating load prediction model for the residential building of district heating based on model calibration," Energy, Elsevier, vol. 205(C).
    7. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    8. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    9. Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
    10. Tian, Shen & Shao, Shuangquan & Liu, Bin, 2019. "Investigation on transient energy consumption of cold storages: Modeling and a case study," Energy, Elsevier, vol. 180(C), pages 1-9.
    11. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Chuanqi & Tian, Wei & Yin, Baoquan & Li, Zhanyong & Shi, Jiaxin, 2020. "Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms," Applied Energy, Elsevier, vol. 268(C).
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    6. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Rejoinder on: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-264, August.
    7. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    8. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    9. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    10. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    11. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    12. Tsyplakov, Alexander, 2013. "Evaluation of Probabilistic Forecasts: Proper Scoring Rules and Moments," MPRA Paper 45186, University Library of Munich, Germany.
    13. Satopää, Ville A. & Baron, Jonathan & Foster, Dean P. & Mellers, Barbara A. & Tetlock, Philip E. & Ungar, Lyle H., 2014. "Combining multiple probability predictions using a simple logit model," International Journal of Forecasting, Elsevier, vol. 30(2), pages 344-356.
    14. Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
    15. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    16. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    17. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    18. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    19. Prada, A. & Gasparella, A. & Baggio, P., 2018. "On the performance of meta-models in building design optimization," Applied Energy, Elsevier, vol. 225(C), pages 814-826.
    20. Elena Andreou & Andros Kourtellos, 2018. "Scoring rules for simple forecasting models: The case of Cyprus GDP and its sectors," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(1), pages 59-73, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924014636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.