IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027578.html
   My bibliography  Save this article

An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles

Author

Listed:
  • Zhou, Huimin
  • Dang, Yaoguo
  • Yang, Yingjie
  • Wang, Junjie
  • Yang, Shaowen

Abstract

An accurate prediction of electric vehicles stock and sales is a prerequisite for planning industrial policies for renewable sources to be used by a transportation system. We propose a novel time-varying grey Bernoulli model to investigate the nonlinear, complexity, and time-varying characteristics associated with electric vehicles stock and sales. We first design the time-varying parameters and a power exponent to explore the nonlinear developing trends of sequences. Subsequently, the cuckoo search algorithm determines optimum solutions because of its competence in dealing with complex optimization problems. Furthermore, its relationship with existing grey prediction models is presented, which demonstrates the flexibility and practicality of the newly-designed model. In order to validate this new model, the global electric vehicles stock and electric vehicles sales in France are predicted in comparison with six benchmark models. As demonstrated by the empirical findings, the proposed model is superior in terms of its capacity for forecasting, confirming its significant potential as a promising tool for electric vehicles stock and sales prediction.

Suggested Citation

  • Zhou, Huimin & Dang, Yaoguo & Yang, Yingjie & Wang, Junjie & Yang, Shaowen, 2023. "An optimized nonlinear time-varying grey Bernoulli model and its application in forecasting the stock and sales of electric vehicles," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027578
    DOI: 10.1016/j.energy.2022.125871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Y. Kong & X. H. Bi, 2014. "Impact of Social Network and Business Model on Innovation Diffusion of Electric Vehicles in China," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, March.
    2. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "Impact of government subsidy on the optimal R&D and advertising investment in the cooperative supply chain of new energy vehicles," Energy Policy, Elsevier, vol. 164(C).
    3. Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
    4. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    5. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    6. Kumar, Rajeev Ranjan & Guha, Pritha & Chakraborty, Abhishek, 2022. "Comparative assessment and selection of electric vehicle diffusion models: A global outlook," Energy, Elsevier, vol. 238(PC).
    7. Ibrahim, Amier & Jiang, Fangming, 2021. "The electric vehicle energy management: An overview of the energy system and related modeling and simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    9. Xiong, Pingping & Li, Kailing & Shu, Hui & Wang, Junjie, 2021. "Forecast of natural gas consumption in the Asia-Pacific region using a fractional-order incomplete gamma grey model," Energy, Elsevier, vol. 237(C).
    10. Choi, Wonjae & Yoo, Eunji & Seol, Eunsu & Kim, Myoungsoo & Song, Han Ho, 2020. "Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea," Applied Energy, Elsevier, vol. 265(C).
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Chen, Hai-Bao & Pei, Ling-Ling & Zhao, Yu-Feng, 2021. "Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach," Energy, Elsevier, vol. 222(C).
    13. Briseño, Hugo & Ramirez-Nafarrate, Adrian & Araz, Ozgur M., 2021. "A multivariate analysis of hybrid and electric vehicles sales in Mexico," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    14. Kang, Yuxiao & Mao, Shuhua & Zhang, Yonghong, 2022. "Fractional time-varying grey traffic flow model based on viscoelastic fluid and its application," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 149-174.
    15. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    16. Ma, Xin & Mei, Xie & Wu, Wenqing & Wu, Xinxing & Zeng, Bo, 2019. "A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China," Energy, Elsevier, vol. 178(C), pages 487-507.
    17. Vassileva, Iana & Campillo, Javier, 2017. "Adoption barriers for electric vehicles: Experiences from early adopters in Sweden," Energy, Elsevier, vol. 120(C), pages 632-641.
    18. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    19. Liu, Chang & Liu, Yuan & Zhang, Dayong & Xie, Chunping, 2022. "The capital market responses to new energy vehicle (NEV) subsidies: An event study on China," Energy Economics, Elsevier, vol. 105(C).
    20. Şahin, Utkucan & Ballı, Serkan & Chen, Yan, 2021. "Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods," Applied Energy, Elsevier, vol. 302(C).
    21. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    22. Duan, Huiming & Liu, Yunmei & Wang, Guan, 2022. "A novel dynamic time-delay grey model of energy prices and its application in crude oil price forecasting," Energy, Elsevier, vol. 251(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    2. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    3. Ding, Yuanping & Dang, Yaoguo, 2023. "Forecasting renewable energy generation with a novel flexible nonlinear multivariable discrete grey prediction model," Energy, Elsevier, vol. 277(C).
    4. Yang, Zhongsen & Wang, Yong & Zhou, Ying & Wang, Li & Ye, Lingling & Luo, Yongxian, 2023. "Forecasting China's electricity generation using a novel structural adaptive discrete grey Bernoulli model," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    2. Kopnova, Elena & Rodionova, Liliya, 2020. "Globalization and socio-economic development in Russia," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 80-101.
    3. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "The implications of monetary expansion in China for the US dollar," Journal of Asian Economics, Elsevier, vol. 46(C), pages 71-84.
    4. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    5. Wensheng Kang & Ronald A. Ratti & Joaquin L. Vespignani, 2016. "The implications of liquidity expansion in China for the US dollar," Globalization Institute Working Papers 264, Federal Reserve Bank of Dallas.
    6. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    7. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
    8. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    9. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    10. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    13. Longfeng Zhang & Xin Ma & Hui Zhang & Gaoxun Zhang & Peng Zhang, 2022. "Multi-Step Ahead Natural Gas Consumption Forecasting Based on a Hybrid Model: Case Studies in The Netherlands and the United Kingdom," Energies, MDPI, vol. 15(19), pages 1-26, October.
    14. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    15. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    16. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    17. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    18. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    19. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    20. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.