IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v182y2023ics1364032123002320.html
   My bibliography  Save this article

Energy security performance evaluation revisited: From the perspective of the energy supply chain

Author

Listed:
  • Wu, Tai-Hsi
  • Huang, Shi-Wei
  • Lin, Mei-Chen
  • Wang, Hsin-Hua

Abstract

The previous research on energy security performance (ESP) has often treated the energy security system as a “black box,” meaning that it has not explored the internal composition structure of the system or the linking relationships of the energy supply chain. This study proposes a comprehensive evaluation framework and a comparative study of ESP evaluation in 32 OECD countries over 20 years, dividing the energy system into four processes. A dynamic network Data Envelopment Analysis (DNDEA) model is used to analyze the energy system's overall performance and each process's performance, considering their internal structure and dynamic characteristics. The ESP results show that half of the 32 OECD countries had perfect efficiency scores, while the other half had scores ranging from 0.0222 to 0.74. The study also found more progress in the second half of the 20-year period. In terms of the four individual processes, the total primary energy supply (TPES) and total final energy consumption (TFEC) processes had consistently high scores, while the secondary energy resources (SER) process had room for improvement. Based on a cross-check of the various ESP results over the past 20 years, as well as the ESP in the most recent decade, seven countries (Austria, Canada, Finland, South Korea, Luxembourg, Norway, and Switzerland) were identified as benchmarks for their strong performance, and the study examined the indicators underlying their success. The study also identifies areas for improvement in underperforming countries and determines future directions for improvement.

Suggested Citation

  • Wu, Tai-Hsi & Huang, Shi-Wei & Lin, Mei-Chen & Wang, Hsin-Hua, 2023. "Energy security performance evaluation revisited: From the perspective of the energy supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002320
    DOI: 10.1016/j.rser.2023.113375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123002320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soundararajan, Kamal & Ho, Hiang Kwee & Su, Bin, 2014. "Sankey diagram framework for energy and exergy flows," Applied Energy, Elsevier, vol. 136(C), pages 1035-1042.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Hughes, Larry & Ranjan, Ashish, 2013. "Event-related stresses in energy systems and their effects on energy security," Energy, Elsevier, vol. 59(C), pages 413-421.
    4. Michela Nardo & Michaela Saisana & Andrea Saltelli & Stefano Tarantola & Anders Hoffman & Enrico Giovannini, 2005. "Handbook on Constructing Composite Indicators: Methodology and User Guide," OECD Statistics Working Papers 2005/3, OECD Publishing.
    5. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    6. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    7. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    10. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    11. Zeng, Shouzhen & Streimikiene, Dalia & Baležentis, Tomas, 2017. "Review of and comparative assessment of energy security in Baltic States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 185-192.
    12. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    13. Udemba, Edmund Ntom & Tosun, Merve, 2022. "Energy transition and diversification: A pathway to achieve sustainable development goals (SDGs) in Brazil," Energy, Elsevier, vol. 239(PC).
    14. Fare, Rolf & Shawna Grosskopf & Mary Norris & Zhongyang Zhang, 1994. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries," American Economic Review, American Economic Association, vol. 84(1), pages 66-83, March.
    15. Huang, Shi-Wei & Chung, Yung-Fu & Wu, Tai-Hsi, 2021. "Analyzing the relationship between energy security performance and decoupling of economic growth from CO2 emissions for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Sebastián Lozano & Ester Gutiérrez, 2014. "A slacks-based network DEA efficiency analysis of European airlines," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(7), pages 623-637, October.
    17. Sovacool, Benjamin K. & Mukherjee, Ishani & Drupady, Ira Martina & D’Agostino, Anthony L., 2011. "Evaluating energy security performance from 1990 to 2010 for eighteen countries," Energy, Elsevier, vol. 36(10), pages 5846-5853.
    18. Lai-Wang Wang & Ke-Duc Le & Thi-Duong Nguyen, 2019. "Assessment of the Energy Efficiency Improvement of Twenty-Five Countries: A DEA Approach," Energies, MDPI, vol. 12(8), pages 1-14, April.
    19. Michelle Graff & Sanya Carley, 2020. "COVID-19 assistance needs to target energy insecurity," Nature Energy, Nature, vol. 5(5), pages 352-354, May.
    20. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    21. Huaping Sun & Muhammad Ikram & Muhammad Mohsin & Qaiser Abbas, 2021. "Energy Security And Environmental Efficiency: Evidence From Oecd Countries," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 66(02), pages 489-506, March.
    22. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    23. Hughes, Larry, 2012. "A generic framework for the description and analysis of energy security in an energy system," Energy Policy, Elsevier, vol. 42(C), pages 221-231.
    24. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, L.P. & Zhou, P., 2024. "Reassessing energy security risk incorporating external shock: A variance-based composite indicator approach," Applied Energy, Elsevier, vol. 358(C).
    2. Wang, Shengyan & Li, Bingkang & Zhao, Xudong & Hu, Qianchen & Liu, Da, 2024. "Assessing fossil energy supply security in China using ecological network analysis from a supply chain perspective," Energy, Elsevier, vol. 288(C).
    3. Henriques, Carla Oliveira & Lima, Alexandre & Nguyen, Duc Khuong & Neves, Maria Elisabete, 2024. "Assessing the vulnerability of oil-dependent countries in Europe," Energy Economics, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hang & Zhang, Yahua & Zhang, Anming & Wang, Kun & Cui, Qiang, 2019. "A comparative study of airline efficiency in China and India: A dynamic network DEA approach," Research in Transportation Economics, Elsevier, vol. 76(C).
    2. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    3. Ying Li & Tai‐Yu Lin & Yung‐ho Chiu & Shu‐Ning Lin & Tzu‐Han Chang, 2021. "Impact of alliances and delay rate on airline performance," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1607-1618, September.
    4. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    5. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    6. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Yu-Chuan Chen & Yung-Ho Chiu & Tzu-Han Chang & Tai-Yu Lin, 2023. "Sustainable Development, Government Efficiency, and People’s Happiness," Journal of Happiness Studies, Springer, vol. 24(4), pages 1549-1578, April.
    8. Xianhua Tan & Danting Zheng & Yuanyuan Zhu & Sanggyun Na, 2023. "The Financing Efficiency of China’s Industrial Listed Enterprises Based on the Dynamic–Network SBM Model," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    9. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    10. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    11. Bai, Xuejie & Jin, Zeng & Chiu, Yung-Ho, 2021. "Performance evaluation of China's railway passenger transportation sector," Research in Transportation Economics, Elsevier, vol. 90(C).
    12. Shiping Mao & Marios Dominikos Kremantzis & Leonidas Sotirios Kyrgiakos & George Vlontzos, 2022. "R&D Performance Evaluation in the Chinese Food Manufacturing Industry Based on Dynamic DEA in the COVID-19 Era," Agriculture, MDPI, vol. 12(11), pages 1-19, November.
    13. Zhen Shi & Yingju Wu & Yung-ho Chiu & Fengping Wu & Changfeng Shi, 2020. "Dynamic Linkages among Mining Production and Land Rehabilitation Efficiency in China," Land, MDPI, vol. 9(3), pages 1-25, March.
    14. Chiu, Yung-ho & Huang, Kuei-Ying & Chang, Tzu-Han & Lin, Tai-Yu, 2021. "Efficiency assessment of coal mine use and land restoration: Considering climate change and income differences," Resources Policy, Elsevier, vol. 73(C).
    15. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    16. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    17. Qian Long Kweh & Wen-Min Lu & Fengyi Lin & Yung-Jr Deng, 2022. "Impact of research and development tax credits on the innovation and operational efficiencies of Internet of things companies in Taiwan," Annals of Operations Research, Springer, vol. 315(2), pages 1217-1241, August.
    18. Mohammad Nourani & Qian Long Kweh & Irene Wei Kiong Ting & Wen-Min Lu & Anna Strutt, 2022. "Evaluating traditional, dynamic and network business models: an efficiency-based study of Chinese insurance companies," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(4), pages 905-943, October.
    19. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. An, Qingxian & Wen, Yao & Ding, Tao & Li, Yongli, 2019. "Resource sharing and payoff allocation in a three-stage system: Integrating network DEA with the Shapley value method," Omega, Elsevier, vol. 85(C), pages 16-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.