IDEAS home Printed from https://ideas.repec.org/p/ipg/wpaper/2017-006.html
   My bibliography  Save this paper

Electricity-Savings Pressure and Electricity-Savings Potential among China?s Inter-Provincial Manufacturing Sectors

Author

Listed:
  • Hao Xiao
  • Shuquan Li
  • Julien Chevallier
  • Bangzhu Zhu

Abstract

The Inter-Regional Input Output (IRIO) model is developed in 11 manufacturing sectors of China?s 30 provincial-level regions. Against the background of electricity pricing and energy-savings, this paper develops and compares the relative sectoral and regional price sensitivities to electricity price and elasticities to electricity demand. The results show that industries such as metal smelting, oil and chemical processing are more sensitive to increasing electricity prices, and have a higher potential of energy-savings. Remarkable findings hold for the regions of Tianjin, Hebei, Jilin, Guangdong, Zhejiang, Shaanxi and Shandong.

Suggested Citation

  • Hao Xiao & Shuquan Li & Julien Chevallier & Bangzhu Zhu, 2017. "Electricity-Savings Pressure and Electricity-Savings Potential among China?s Inter-Provincial Manufacturing Sectors," Working Papers 2017-006, Department of Research, Ipag Business School.
  • Handle: RePEc:ipg:wpaper:2017-006
    as

    Download full text from publisher

    File URL: https://faculty-research.ipag.edu/wp-content/uploads/recherche/WP/IPAG_WP_2017_006.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    2. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    3. Sugino, Makoto & Arimura, Toshi H. & Morgenstern, Richard D., 2013. "The effects of alternative carbon mitigation policies on Japanese industries," Energy Policy, Elsevier, vol. 62(C), pages 1254-1267.
    4. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    5. Wu, Libo & Li, Jing & Zhang, ZhongXiang, 2013. "Inflationary effect of oil-price shocks in an imperfect market: A partial transmission input–output analysis," Journal of Policy Modeling, Elsevier, vol. 35(2), pages 354-369.
    6. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
    7. Jiang, Zhujun & Tan, Jijun, 2013. "How the removal of energy subsidy affects general price in China: A study based on input–output model," Energy Policy, Elsevier, vol. 63(C), pages 599-606.
    8. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
    9. Lin, Boqiang & Moubarak, Mohamed, 2014. "Mitigation potential of carbon dioxide emissions in the Chinese textile industry," Applied Energy, Elsevier, vol. 113(C), pages 781-787.
    10. Lim, Seul-Ye & Yoo, Seung-Hoon, 2013. "The impact of electricity price changes on industrial prices and the general price level in Korea," Energy Policy, Elsevier, vol. 61(C), pages 1551-1555.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Electricity demand and conservation potential in the Chinese nonmetallic mineral products industry," Energy Policy, Elsevier, vol. 68(C), pages 243-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    2. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    3. Du, Zhili & Wang, Yao, 2022. "Does energy-saving and emission reduction policy affects carbon reduction performance? A quasi-experimental evidence in China," Applied Energy, Elsevier, vol. 324(C).
    4. Ling Li & Ling Tang & Junrong Zhang, 2019. "Coupling Structural Decomposition Analysis and Sensitivity Analysis to Investigate CO 2 Emission Intensity in China," Energies, MDPI, vol. 12(12), pages 1-23, June.
    5. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    6. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
    7. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    8. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    9. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    10. Thollander, Patrik & Kimura, Osamu & Wakabayashi, Masayo & Rohdin, Patrik, 2015. "A review of industrial energy and climate policies in Japan and Sweden with emphasis towards SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 504-512.
    11. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    12. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    13. Mr. Kangni R Kpodar & Ms. Stefania Fabrizio & Kodjovi M. Eklou, 2019. "Export Competitiveness - Fuel Price Nexus in Developing Countries: Real or False Concern?," IMF Working Papers 2019/025, International Monetary Fund.
    14. Rongrong Xu & Yongxiang Wu & Ming Chen & Xuan Zhang & Wei Wu & Long Tan & Gaoxu Wang & Yi Xu & Bing Yan & Yuedong Xia, 2019. "Calculation of the contribution rate of China’s hydraulic science and technology based on a feedforward neural network," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-22, September.
    15. Du, Xiaoyun & Meng, Conghui & Guo, Zhenhua & Yan, Hang, 2023. "An improved approach for measuring the efficiency of low carbon city practice in China," Energy, Elsevier, vol. 268(C).
    16. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    17. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    18. Zebin Zheng & Wenjun Xiao & Ziye Cheng, 2023. "China’s Green Total Factor Energy Efficiency Assessment Based on Coordinated Reduction in Pollution and Carbon Emission: From the 11th to the 13th Five-Year Plan," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    19. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    20. Mardones, Cristian & Baeza, Nicolas, 2018. "Economic and environmental effects of a CO2 tax in Latin American countries," Energy Policy, Elsevier, vol. 114(C), pages 262-273.

    More about this item

    Keywords

    IRIO model; electricity pricing; energy-savings; China;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • N65 - Economic History - - Manufacturing and Construction - - - Asia including Middle East

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipg:wpaper:2017-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ingmar Schumacher (email available below). General contact details of provider: https://edirc.repec.org/data/ipagpfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.