IDEAS home Printed from https://ideas.repec.org/a/taf/oaefxx/v5y2017i1p1316553.html
   My bibliography  Save this article

Decomposition analysis of the pollution intensities in the case of the United Kingdom

Author

Listed:
  • Kenichi Shimamoto

Abstract

This paper examines the changes to pollution intensities (SO2, NOx, CO and CO2) of the United Kingdom, by using the Divisia index decomposition technique. The paper decomposes the drivers of the changes in pollution intensities into not only technology contribution and composition contribution but also into physical capital intensity contribution. This is because an increase in physical capital will lead to further use of energy and resources, which will further impact the environment. Compared to past studies, this paper extends the analysis to each industrial sector and includes more focused policy implications. The results find that the aggregate pollution intensity has declined during the period examined. As for SO2 and NOx, the technology effect was the largest contributor for the decline in aggregate pollution intensity, during a period where economic instruments such as pollution taxes were not yet effectively applied to combat environmental issues, but major environmental statutory frameworks to regulate air pollution were developed along with voluntary measures such as environment management systems. On the other hand, concerning CO and CO2 over the same time period observed, the contribution of technology effect for the aggregate intensity was small, compared with SO2, and NOx, which implies that economic instruments such as emission trading may be necessary for these pollutant.

Suggested Citation

  • Kenichi Shimamoto, 2017. "Decomposition analysis of the pollution intensities in the case of the United Kingdom," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1316553-131, January.
  • Handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1316553
    DOI: 10.1080/23322039.2017.1316553
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/23322039.2017.1316553
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/23322039.2017.1316553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Ki-Hong & Oh, Wankeun, 2014. "Extended Divisia index decomposition of changes in energy intensity: A case of Korean manufacturing industry," Energy Policy, Elsevier, vol. 65(C), pages 275-283.
    2. Cole, M.A. & Rayner, A.J. & Bates, J.M., 1997. "The environmental Kuznets curve: an empirical analysis," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 401-416, November.
    3. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    4. Matthew A. Cole & Robert J.R. Elliott & Kenichi Shimamoto, 2005. "A Note on Trends in European Industrial Pollution Intensities: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 61-74.
    5. Sue J. Lin & Tzu C. Chang, 1996. "Decomposition of SO2, NO1 and CO2 Emissions from Energy Use of Major Economic Sectors in Taiwan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 1-17.
    6. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    7. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    8. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    9. Eric Neumayer, 2013. "Weak versus Strong Sustainability," Books, Edward Elgar Publishing, number 14993.
    10. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    11. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    12. Joel F. Bruneau & Steven J. Renzetti, 2009. "Greenhouse Gas Intensity in Canada: A Look at Historical Trends," Canadian Public Policy, University of Toronto Press, vol. 35(1), pages 1-20, March.
    13. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    14. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    15. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    16. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    17. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    18. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    2. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    4. Madanmohan Ghosh & Deming Luo & Muhammad Shahid Siddiqui & Thomas Rutherford & Yunfa Zhu, 2020. "The Drivers of Greenhouse Gas Emissions Intensity Improvements in Major Economies: Analysis of Trends 1995–2009," Foreign Trade Review, , vol. 55(3), pages 277-297, August.
    5. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    6. Duan, Yuwan & Jiang, Xuemei, 2017. "Temporal Change of China's Pollution Terms of Trade and its Determinants," Ecological Economics, Elsevier, vol. 132(C), pages 31-44.
    7. Rina Wu & Jiquan Zhang & Yuhai Bao & Quan Lai & Siqin Tong & Youtao Song, 2016. "Decomposing the Influencing Factors of Industrial Sector Carbon Dioxide Emissions in Inner Mongolia Based on the LMDI Method," Sustainability, MDPI, vol. 8(7), pages 1-14, July.
    8. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    9. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    10. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    11. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    12. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    13. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    14. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    15. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    16. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    17. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    18. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    19. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    20. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:oaefxx:v:5:y:2017:i:1:p:1316553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/OAEF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.