IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v208y2024ics0040162524005183.html
   My bibliography  Save this article

Multi-step carbon emissions forecasting using an interpretable framework of new data preprocessing techniques and improved grey multivariable convolution model

Author

Listed:
  • Ding, Song
  • Ye, Juntao
  • Cai, Zhijian

Abstract

As China stands at a critical juncture in its transition towards a low-carbon future, the precise prediction and analysis of provincial carbon emissions have emerged as paramount tasks. Focusing on forecasting in this intricate and vital domain, an updated grey multivariable convolution model is designed by employing the unified new-information-oriented accumulating generation operator (UNAGO) technique to process raw sequences. Equipped with UNAGO's hyper-parameters that enable the independent scaling effects and prioritize new information, the newly-designed model offers high flexibility and adaptability for handling complex provincial carbon emissions. Subsequently, four different restricted carbon emission sequences are utilized as case studies for validation purposes, and the new model's performance is scrutinized against five contrasting methods across three prediction forecasting horizons. Comparative experimental results reveal the new model's superior level of accuracy in predicting carbon emissions across four different provinces, with MAPE values of <4 % and 10 % in the in-sample and out-of-sample periods, respectively. Furthermore, rigorous evaluations with Diebold-Mariano (DM) and Probability Density Analysis (PDA) tests confirm the model's robust and general forecasting capabilities.

Suggested Citation

  • Ding, Song & Ye, Juntao & Cai, Zhijian, 2024. "Multi-step carbon emissions forecasting using an interpretable framework of new data preprocessing techniques and improved grey multivariable convolution model," Technological Forecasting and Social Change, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524005183
    DOI: 10.1016/j.techfore.2024.123720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524005183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:208:y:2024:i:c:s0040162524005183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.