IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2576-d336598.html
   My bibliography  Save this article

Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method

Author

Listed:
  • Xianzhao Liu

    (School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Xu Yang

    (School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Ruoxin Guo

    (School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract

Determining differences in regional carbon emissions and the factors that affect these differences is important in the realization of differentiated emissions mitigation policies. This paper adopts the Theil index and the partial least square-variable importance of projection (PLS-VIP) method to analyze the change characteristics, regional differences and causes of carbon emissions, as well as the extent to which various factors influenced carbon emissions in China’s eight economic regions in 2005–2017. The results indicate that (1) during the study period, carbon emissions in the eight economic regions displayed a rigid uptrend with a phased characteristic. The growth rates of carbon emissions were different across the studied regions. (2) The overall difference in regional carbon emissions showed an increasing trend, mainly owing to increasing interregional differences. (3) The extent of the influence and explanatory ability of each factor on regional carbon emissions and discrepancies in carbon emissions were different. Population size, economic development, and energy intensity were found to be the three main factors influencing regional carbon emission changes. Industrial structure and urbanization were also contributors to regional differences in emissions. The influence of energy structure on regional carbon emissions and its explanatory power were weak on the whole, but its elastic coefficients and VIP values changed significantly. Finally, regionally targeted proposals for emissions mitigation are offered.

Suggested Citation

  • Xianzhao Liu & Xu Yang & Ruoxin Guo, 2020. "Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method," Sustainability, MDPI, vol. 12(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2576-:d:336598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2576/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2576/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    2. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    3. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    4. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    5. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    6. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    7. Li, Ke & Lin, Boqiang, 2017. "Economic growth model, structural transformation, and green productivity in China," Applied Energy, Elsevier, vol. 187(C), pages 489-500.
    8. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
    9. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    10. Geng, Yuhuan & Tian, Mingzhong & Zhu, Qiuan & Zhang, Jianjun & Peng, Changhui, 2011. "Quantification of provincial-level carbon emissions from energy consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3658-3668.
    11. Yong Wang & Guangchun Yang & Ying Dong & Yu Cheng & Peipei Shang, 2018. "The Scale, Structure and Influencing Factors of Total Carbon Emissions from Households in 30 Provinces of China—Based on the Extended STIRPAT Model," Energies, MDPI, vol. 11(5), pages 1-25, May.
    12. Mahony, Tadhg O', 2013. "Decomposition of Ireland's carbon emissions from 1990 to 2010: An extended Kaya identity," Energy Policy, Elsevier, vol. 59(C), pages 573-581.
    13. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    14. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    15. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    16. Clarke-Sather, Afton & Qu, Jiansheng & Wang, Qin & Zeng, Jingjing & Li, Yan, 2011. "Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997-2007," Energy Policy, Elsevier, vol. 39(9), pages 5420-5428, September.
    17. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    18. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    19. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    20. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Xiongfeng & Guo, Shucen, 2024. "Decomposition analysis of regional differences in China's carbon emissions based on socio-economic factors," Energy, Elsevier, vol. 303(C).
    2. Xia, Yin-Shuang & Sun, Lu-Xuan & Feng, Chao, 2022. "What causes spatial inequalities of low-carbon development in China's transport sector? A newly proposed meta-frontier DEA-based decomposition approach," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Shengyun Wang & Yaxin Zhang & Huwei Wen, 2021. "Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    4. Chulin Pan & Huayi Wang & Hongpeng Guo & Hong Pan, 2021. "How Do the Population Structure Changes of China Affect Carbon Emissions? An Empirical Study Based on Ridge Regression Analysis," Sustainability, MDPI, vol. 13(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    2. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    3. Lizhan Cao & Hui Wang, 2022. "The Slowdown in China’s Energy Consumption Growth in the “New Normal” Stage: From Both National and Regional Perspectives," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    4. Shi, Kaifang & Yu, Bailang & Zhou, Yuyu & Chen, Yun & Yang, Chengshu & Chen, Zuoqi & Wu, Jianping, 2019. "Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels," Applied Energy, Elsevier, vol. 233, pages 170-181.
    5. Yang, Di & Luan, Weixin & Qiao, Lu & Pratama, Mahardhika, 2020. "Modeling and spatio-temporal analysis of city-level carbon emissions based on nighttime light satellite imagery," Applied Energy, Elsevier, vol. 268(C).
    6. Ye, Bin & Jiang, JingJing & Li, Changsheng & Miao, Lixin & Tang, Jie, 2017. "Quantification and driving force analysis of provincial-level carbon emissions in China," Applied Energy, Elsevier, vol. 198(C), pages 223-238.
    7. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    8. Xuecheng Wang & Xu Tang & Baosheng Zhang & Benjamin C. McLellan & Yang Lv, 2018. "Provincial Carbon Emissions Reduction Allocation Plan in China Based on Consumption Perspective," Sustainability, MDPI, vol. 10(5), pages 1-23, April.
    9. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    10. Xu, Chong & Wang, Bingjie & Chen, Jiandong & Shen, Zhiyang & Song, Malin & An, Jiafu, 2022. "Carbon inequality in China: Novel drivers and policy driven scenario analysis," Energy Policy, Elsevier, vol. 170(C).
    11. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    12. Du, Mingxi & Wang, Xiaoge & Peng, Changhui & Shan, Yuli & Chen, Huai & Wang, Meng & Zhu, Qiuan, 2018. "Quantification and scenario analysis of CO2 emissions from the central heating supply system in China from 2006 to 2025," Applied Energy, Elsevier, vol. 225(C), pages 869-875.
    13. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    14. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    15. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    16. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    17. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    18. Fan, Wei & Li, Li & Wang, Feiran & Li, Ding, 2020. "Driving factors of CO2 emission inequality in China: The role of government expenditure," China Economic Review, Elsevier, vol. 64(C).
    19. Meng Yang & Yisheng Liu & Jinzhao Tian & Feiyu Cheng & Pengbo Song, 2022. "Dynamic Evolution and Regional Disparity in Carbon Emission Intensity in China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    20. Lei Liu & Ke Wang & Shanshan Wang & Ruiqin Zhang & Xiaoyan Tang, 2019. "Exploring the Driving Forces and Reduction Potential of Industrial Energy-Related CO 2 Emissions during 2001–2030: A Case Study for Henan Province, China," Sustainability, MDPI, vol. 11(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2576-:d:336598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.