IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3368-d1066220.html
   My bibliography  Save this article

A Simulation Study on the Impact of the Digital Economy on CO 2 Emission Based on the System Dynamics Model

Author

Listed:
  • Zhenzhen Liao

    (School of Economics & Management, Northwest University, Xi’an 710127, China)

  • Shaofeng Ru

    (School of Economics & Management, Northwest University, Xi’an 710127, China
    The Western Economic Development Research Institute, Northwest University, Xi’an 710127, China)

  • Yiyang Cheng

    (School of Economics & Management, Northwest University, Xi’an 710127, China)

Abstract

The digital economy plays an important role in achieving the strategic goal of “carbon peaking and carbon neutrality” in China. In this study, we construct a system dynamics (SD) model to comprehensively analyze the impact of the digital economy on CO 2 emission. First, we simulate and forecast the future baseline of the digital economy, energy consumption, and CO 2 emission in China from 2005 to 2040. Second, we study the impact of the digital economy on CO 2 emission based on scenario analysis of different digital economy growth rates. Finally, we study the influencing factors of CO 2 emission reduction effect of the digital economy. The results indicate the following: (1) CO 2 emission will peak in 2034. From 2020 to 2025, the cumulative reduction in energy consumption intensity will be 15.75% and the cumulative reduction in CO 2 emission intensity will be 20.9%. Both indicators will reach the national goals during the 14th Five-Year Plan period. However, it will require more effort to realize the goal of the share of non-fossil energy. (2) There is an inverted U-shaped relationship between the digital economy and CO 2 emission. The digital economy aggravates CO 2 emission mainly by promoting energy consumption, but it reduces CO 2 emission by promoting the upgrading of the energy consumption structure and reducing the energy consumption intensity. (3) The R&D investment intensity and the environment investment intensity can strengthen the CO 2 emission reduction effect of the digital economy. The results will be crucial for carbon reduction and provide policymakers with suggestions for sustainability.

Suggested Citation

  • Zhenzhen Liao & Shaofeng Ru & Yiyang Cheng, 2023. "A Simulation Study on the Impact of the Digital Economy on CO 2 Emission Based on the System Dynamics Model," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3368-:d:1066220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhattacharya, Mita & Rafiq, Shuddhasattwa & Bhattacharya, Sankar, 2015. "The role of technology on the dynamics of coal consumption–economic growth: New evidence from China," Applied Energy, Elsevier, vol. 154(C), pages 686-695.
    2. Olena Ivus & Matthew Boland, 2015. "The employment and wage impact of broadband deployment in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(5), pages 1803-1830, December.
    3. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    4. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    5. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    6. Sadorsky, Perry, 2012. "Information communication technology and electricity consumption in emerging economies," Energy Policy, Elsevier, vol. 48(C), pages 130-136.
    7. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    8. Yang Liu & Yanlin Yang & Huihui Li & Kaiyang Zhong, 2022. "Digital Economy Development, Industrial Structure Upgrading and Green Total Factor Productivity: Empirical Evidence from China’s Cities," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
    9. Zaheer Allam & David Jones, 2021. "Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies," Post-Print hal-03477845, HAL.
    10. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    11. Yang, Yuan & Cai, Wenjia & Wang, Can, 2014. "Industrial CO2 intensity, indigenous innovation and R&D spillovers in China’s provinces," Applied Energy, Elsevier, vol. 131(C), pages 117-127.
    12. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    13. Ma, Qiang & Tariq, Muhammad & Mahmood, Haider & Khan, Zeeshan, 2022. "The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development," Technology in Society, Elsevier, vol. 68(C).
    14. Allam, Zaheer & Jones, David S., 2021. "Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies," Land Use Policy, Elsevier, vol. 101(C).
    15. He, Ruifang & Zhong, Meirui & Huang, Jianbai, 2021. "Technological progress and metal resource consumption in the electricity industry—A cross-country panel threshold data analysis," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiheng Xu & Kaiwen Ji & Zichen Yuan & Chenye Wang & Yihan Xia, 2024. "Exploring the Evolution Trend of China’s Digital Carbon Footprint: A Simulation Based on System Dynamics Approach," Sustainability, MDPI, vol. 16(10), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    2. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    3. Wang, Jianda & Dong, Kangyin & Dong, Xiucheng & Taghizadeh-Hesary, Farhad, 2022. "Assessing the digital economy and its carbon-mitigation effects: The case of China," Energy Economics, Elsevier, vol. 113(C).
    4. Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
    5. Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
    6. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    7. Xiong, Su & Luo, Rong, 2023. "Investigating the relationship between digital trade, natural resources, energy transition, and green productivity: Moderating role of R&D investment," Resources Policy, Elsevier, vol. 86(PB).
    8. Škare, Marinko & Gavurova, Beata & Porada-Rochon, Malgorzata, 2024. "Digitalization and carbon footprint: Building a path to a sustainable economic growth," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    9. Ke-Liang Wang & Rui-Rui Zhu & Yun-He Cheng, 2022. "Does the Development of Digital Finance Contribute to Haze Pollution Control? Evidence from China," Energies, MDPI, vol. 15(7), pages 1-21, April.
    10. Xue, Yan & Tang, Chang & Wu, Haitao & Liu, Jianmin & Hao, Yu, 2022. "The emerging driving force of energy consumption in China: Does digital economy development matter?," Energy Policy, Elsevier, vol. 165(C).
    11. Zhong Ren & Jie Zhang, 2023. "Digital Economy, Clean Energy Consumption, and High-Quality Economic Development: The Case of China," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    12. Wang, Lei & Chen, Yangyang & Ramsey, Thomas Stephen & Hewings, Geoffrey J.D., 2021. "Will researching digital technology really empower green development?," Technology in Society, Elsevier, vol. 66(C).
    13. Clement, Jessica & Ruysschaert, Benoit & Crutzen, Nathalie, 2023. "Smart city strategies – A driver for the localization of the sustainable development goals?," Ecological Economics, Elsevier, vol. 213(C).
    14. Li, Yaya & Zhang, Yuru & Pan, An & Han, Minchun & Veglianti, Eleonora, 2022. "Carbon emission reduction effects of industrial robot applications: Heterogeneity characteristics and influencing mechanisms," Technology in Society, Elsevier, vol. 70(C).
    15. Huaxue Zhao & Yu Cheng & Ruijing Zheng, 2022. "Impact of the Digital Economy on PM 2.5 : Experience from the Middle and Lower Reaches of the Yellow River Basin," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    16. Wang, Jiangquan & Nghiem, Xuan-Hoa & Jabeen, Fauzia & Luqman, Adeel & Song, Malin, 2023. "Integrated development of digital and energy industries: Paving the way for carbon emission reduction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    17. Wang, Ying & Wang, Yong & Shahbaz, Muhammad, 2023. "How does digital economy affect energy poverty? Analysis from the global perspective," Energy, Elsevier, vol. 282(C).
    18. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    19. Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
    20. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3368-:d:1066220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.