IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i1p244-d127622.html
   My bibliography  Save this article

Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries

Author

Listed:
  • Andrew Chapman

    (International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan)

  • Hidemichi Fujii

    (Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan)

  • Shunsuke Managi

    (Urban Institute, Department of Urban and Environmental Engineering, School of Engineering, Kyushu University, 744 Motooka Nishi-ku Fukuoka 819-0395, Japan)

Abstract

This study analyzes the key drivers of the relationship between economic growth and carbon emissions in six Northeast Asian countries (China, Japan, Republic of Korea, Democratic People’s Republic of Korea, Mongolia, and Russia) from 1991 to 2015. We apply a decomposition analysis approach using Logarithmic Mean Divisia Index to identify the main contributing factors toward CO 2 emission changes. To discuss the decomposition results in more in detail, we explain the energy portfolio change in each country to understand the energy and resource utilization strategy. From the results, we find that the key driving factors of CO 2 emissions change and energy portfolio trends are different among Northeast Asian countries, driven by economic growth in China and Korea, reduced by energy efficiency improvements in Russia and the DPRK, while being relatively benign in Japan and Mongolia due to a combination of these factors. This result implies that we can better understand the regional cooperation policy for improving each driving factor to achieve sustainable development and management of CO 2 emissions considering the characteristics of each country.

Suggested Citation

  • Andrew Chapman & Hidemichi Fujii & Shunsuke Managi, 2018. "Key Drivers for Cooperation toward Sustainable Development and the Management of CO 2 Emissions: Comparative Analysis of Six Northeast Asian Countries," Sustainability, MDPI, vol. 10(1), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:244-:d:127622
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    2. Rainer Walz & Matthias Pfaff & Frank Marscheider-Weidemann & Simon Glöser-Chahoud, 2017. "Innovations for reaching the green sustainable development goals –where will they come from?," International Economics and Economic Policy, Springer, vol. 14(3), pages 449-480, July.
    3. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    4. Bin Grace Li & Pranav Gupta & Jiangyan Yu, 2017. "From natural resource boom to sustainable economic growth: Lessons from Mongolia," International Economics, CEPII research center, issue 151, pages 7-25.
    5. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
    6. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    7. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    8. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    9. S. N. Bobylev & S. V. Solovyeva, 2017. "Sustainable development goals for the future of Russia," Studies on Russian Economic Development, Springer, vol. 28(3), pages 259-265, May.
    10. Koo, Bonsang, 2017. "Examining the impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea's renewable energy projects through comparative investment analysis," Energy Policy, Elsevier, vol. 104(C), pages 144-154.
    11. Chapman, Andrew J. & Itaoka, Kenshi, 2018. "Energy transition to a future low-carbon energy society in Japan's liberalizing electricity market: Precedents, policies and factors of successful transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2019-2027.
    12. Kathrin Berensmann & Florence Dafe & Nannette Lindenberg, 2018. "Demystifying green bonds," Chapters, in: Sabri Boubaker & Douglas Cumming & Duc K. Nguyen (ed.), Research Handbook of Investing in the Triple Bottom Line, chapter 15, pages 333-352, Edward Elgar Publishing.
    13. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
    14. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongzhong Fan & Md Ismail Hossain & Mollah Aminul Islam & Yassin Elshain Yahia, 2019. "The Impact of Trade, Technology and Growth on Environmental Deterioration of China and India," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 9(1), pages 1-29, January.
    2. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
    3. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    4. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    5. Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    6. Hanif, Imran & Aziz, Babar & Chaudhry, Imran Sharif, 2019. "Carbon emissions across the spectrum of renewable and nonrenewable energy use in developing economies of Asia," Renewable Energy, Elsevier, vol. 143(C), pages 586-595.
    7. Yongrok Choi, 2018. "Regional Cooperation for the Sustainable Development and Management in Northeast Asia," Sustainability, MDPI, vol. 10(2), pages 1-8, February.
    8. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    9. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    10. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    11. Xiaohu Lin & Jie Ren & Jingcheng Xu & Tao Zheng & Wei Cheng & Junlian Qiao & Juwen Huang & Guangming Li, 2018. "Prediction of Life Cycle Carbon Emissions of Sponge City Projects: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    12. Husam Rjoub & Jamiu Adetola Odugbesan & Tomiwa Sunday Adebayo & Wing-Keung Wong, 2021. "Sustainability of the Moderating Role of Financial Development in the Determinants of Environmental Degradation: Evidence from Turkey," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    13. Ying Sun & Zhaolin Gu, 2022. "Implementation of Construction Waste Recycling under Construction Sustainability Incentives: A Multi-Agent Stochastic Evolutionary Game Approach," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    14. Ansaram, Karishma & Petitjean, Mikael, 2024. "A global perspective on the nexus between energy and stock markets in light of the rise of renewable energy," Energy Economics, Elsevier, vol. 131(C).
    15. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
    2. Fujii, Hidemichi & Managi, Shunsuke, 2016. "Research and development strategy for environmental technology in Japan: A comparative study of the private and public sectors," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 293-302.
    3. Hidemichi Fujii & Masayuki Sato & Shunsuke Managi, 2017. "Decomposition Analysis of Forest Ecosystem Services Values," Sustainability, MDPI, vol. 9(5), pages 1-14, April.
    4. Hidemichi Fujii & Yoshitaka Sakakura & Atsushi Hagiwara & John Bostock & Kiyoshi Soyano & Yoshiki Matsushita, 2017. "Research and Development Strategy for Fishery Technology Innovation for Sustainable Fishery Resource Management in North-East Asia," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    5. Chang, Kai & Chen, Rongda & Chevallier, Julien, 2018. "Market fragmentation, liquidity measures and improvement perspectives from China's emissions trading scheme pilots," Energy Economics, Elsevier, vol. 75(C), pages 249-260.
    6. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    7. Inmaculada Carrasco & Juan Sebastián Castillo-Valero & Carmen Córcoles & Marcos Carchano, 2021. "Greening Wine Exports? Changes in the Carbon Footprint of Spanish Wine Exports," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    8. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    9. Huaming Chen & Jia Liu & Ying Li & Yung-Ho Chiu & Tai-Yu Lin, 2019. "A Two-stage Dynamic Undesirable Data Envelopment Analysis Model Focused on Media Reports and the Impact on Energy and Health Efficiency," IJERPH, MDPI, vol. 16(9), pages 1-23, April.
    10. Daming You & Ke Jiang & Zhendong Li, 2018. "Optimal Coordination Strategy of Regional Vertical Emission Abatement Collaboration in a Low-Carbon Environment," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    11. Fujii, Hidemichi & Managi, Shunsuke, 2018. "Trends and priority shifts in artificial intelligence technology invention: A global patent analysis," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 60-69.
    12. Fujii, Hidemichi & Managi, Shunsuke & Kaneko, Shinji, 2019. "Decomposition analysis of air pollution abatement in China: Empirical study for ten industrial sectors from 1998 to 2009," MPRA Paper 92234, University Library of Munich, Germany.
    13. Muhammad Usman & Zhiqiang Ma & Muhammad Wasif Zafar & Abdul Haseeb & Rana Umair Ashraf, 2019. "Are Air Pollution, Economic and Non-Economic Factors Associated with Per Capita Health Expenditures? Evidence from Emerging Economies," IJERPH, MDPI, vol. 16(11), pages 1-22, June.
    14. Hidemichi Fujii & Kentaro Yoshida & Ken Sugimura, 2016. "Research and Development Strategy in Biological Technologies: A Patent Data Analysis of Japanese Manufacturing Firms," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    15. Ota, Toru & Kakinaka, Makoto & Kotani, Koji, 2018. "Demographic effects on residential electricity and city gas consumption in the aging society of Japan," Energy Policy, Elsevier, vol. 115(C), pages 503-513.
    16. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    17. Maria Urbaniec & Justyna Tomala & Sergio Martinez, 2021. "Measurements and Trends in Technological Eco-Innovation: Evidence from Environment-Related Patents," Resources, MDPI, vol. 10(7), pages 1-17, June.
    18. Fujii, Hidemichi & Shirakawa, Seiji, 2015. "Decomposition analysis of green chemical technology inventions from 1971 to 2010 in Japan," MPRA Paper 62790, University Library of Munich, Germany.
    19. Tiancai Xing & Qichuan Jiang & Xuejiao Ma, 2017. "To Facilitate or Curb? The Role of Financial Development in China’s Carbon Emissions Reduction Process: A Novel Approach," IJERPH, MDPI, vol. 14(10), pages 1-39, October.
    20. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:1:p:244-:d:127622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.