IDEAS home Printed from https://ideas.repec.org/a/eee/chieco/v62y2020ics1043951x20300511.html
   My bibliography  Save this article

Green total factor productivity: A re-examination of quality of growth for provinces in China

Author

Listed:
  • Xia, Fan
  • Xu, Jintao

Abstract

In this paper we try to assess the quality of growth for provinces in China over the period of 1997–2015. To do so we calculate a set of Green total factor productivity (or GTFP) indexes by incorporating environmental performance variables at the provincial level. A nonparametric approach (Directional Distance Function a la Chung et al., 1997) is adopted in the estimation. Furthermore, we apply bootstrapping method to correct estimation bias and obtain statistical property of the estimated indexes. The GTFP indexes estimated here demonstrate very different trends from the GDP growth rateand standard TFP indexes ignoring environmental outcomes. For the period of interests, when annual GDP growth rate was very high, no steady growth was found in TFP and GTFP, by contrast. The rankings of provinces differ significantly across measures of GDP growth, TFP and GTFP. In addition, our estimates of GTFP trends are also significantly different from findings by other papers of GTFP estimation (Hu et al., 2008; Wang et al., 2010) without bootstrapping procedure.

Suggested Citation

  • Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:chieco:v:62:y:2020:i:c:s1043951x20300511
    DOI: 10.1016/j.chieco.2020.101454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1043951X20300511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chieco.2020.101454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simar, Léopold & Vanhems, Anne & Wilson, Paul W., 2012. "Statistical inference for DEA estimators of directional distances," European Journal of Operational Research, Elsevier, vol. 220(3), pages 853-864.
    2. Zhou, P. & Delmas, M.A. & Kohli, A., 2017. "Constructing meaningful environmental indices: A nonparametric frontier approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 21-34.
    3. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    4. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    5. Raymond W. Goldsmith, 1951. "A Perpetual Inventory of National Wealth," NBER Chapters, in: Studies in Income and Wealth, Volume 14, pages 5-73, National Bureau of Economic Research, Inc.
    6. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    7. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    8. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    9. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    10. Byung M. Jeon & Robin C. Sickles, 2004. "The role of environmental factors in growth accounting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 567-591.
    11. Chen, Shiyi & Golley, Jane, 2014. "‘Green’ productivity growth in China's industrial economy," Energy Economics, Elsevier, vol. 44(C), pages 89-98.
    12. Jinghai Zheng & Angang Hu, 2006. "An Empirical Analysis of Provincial Productivity in China (1979-2001)," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 4(3), pages 221-239.
    13. Álvarez, Inmaculada & Barbero, Javier & Zofío, Jose Luis, 2016. "A Data Envelopment Analysis Toolbox for MATLAB," Working Papers in Economic Theory 2016/03, Universidad Autónoma de Madrid (Spain), Department of Economic Analysis (Economic Theory and Economic History).
    14. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    15. William D. Nordhaus & James Tobin, 1973. "Is Growth Obsolete?," NBER Chapters, in: The Measurement of Economic and Social Performance, pages 509-564, National Bureau of Economic Research, Inc.
    16. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    17. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    18. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    19. Boyd, James, 2007. "Nonmarket benefits of nature: What should be counted in green GDP?," Ecological Economics, Elsevier, vol. 61(4), pages 716-723, March.
    20. Jing Cao & Mun S. Ho & Dale W. Jorgenson & Ruoen Ren & Linlin Sun & Ximing Yue, 2009. "Industrial And Aggregate Measures Of Productivity Growth In China, 1982–2000," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(s1), pages 485-513, July.
    21. Alwyn Young, 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1220-1261, December.
    22. Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
    23. William D. Nordhaus & James Tobin, 1972. "Economic Research: Retrospect and Prospect, Volume 5, Economic Growth," NBER Books, National Bureau of Economic Research, Inc, number nord72-1.
    24. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    25. Charles R. Hulten, 2001. "Total Factor Productivity: A Short Biography," NBER Chapters, in: New Developments in Productivity Analysis, pages 1-54, National Bureau of Economic Research, Inc.
    26. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    27. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    2. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    3. Monastyrenko, Evgenii, 2017. "Eco-efficiency outcomes of mergers and acquisitions in the European electricity industry," Energy Policy, Elsevier, vol. 107(C), pages 258-277.
    4. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    5. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    6. Jianglong Li & Boqiang Lin, 2016. "Green Economy Performance and Green Productivity Growth in China’s Cities: Measures and Policy Implication," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    7. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    8. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
    9. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    10. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    11. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    12. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    13. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
    14. Lin, Boqiang & Chen, Yu, 2020. "Will land transport infrastructure affect the energy and carbon dioxide emissions performance of China’s manufacturing industry?," Applied Energy, Elsevier, vol. 260(C).
    15. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    16. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    17. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    18. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    19. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    20. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chieco:v:62:y:2020:i:c:s1043951x20300511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/chieco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.