IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12960-d938158.html
   My bibliography  Save this article

The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China

Author

Listed:
  • Huiling Wang

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Jiaxin Luo

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Mengtian Zhang

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

  • Yue Ling

    (School of Economics, Lanzhou University, Lanzhou 730000, China)

Abstract

Adjusting transportation structure to reduce the intensity of greenhouse gas emissions is an effective way to address climate change issues. This paper selects six transport sectors and constructs a hybrid input-output model to study the impact of transportation restructuring on the intensity of CO 2 and non-CO 2 greenhouse gas emissions in each sector during different periods. The results show that the effect of transportation restructuring on greenhouse gas emissions is manifested differently in different time periods. After 2008, transportation restructuring had a significant effect on reducing the intensity of greenhouse gas emissions in all sectors. However, the impact of transportation restructuring on the intensity of non-CO 2 greenhouse gas emissions is limited. It is also found that the railway transport sector has been a low-impact transport sector in terms of greenhouse gas emissions since 2004, which provides insights for the optimization of China’s transportation structure.

Suggested Citation

  • Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12960-:d:938158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    2. Yu Gan & Zifeng Lu & Hao Cai & Michael Wang & Xin He & Steven Przesmitzki, 2020. "Future private car stock in China: current growth pattern and effects of car sales restriction," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 289-306, March.
    3. Lane, Bradley W., 2012. "On the utility and challenges of high-speed rail in the United States," Journal of Transport Geography, Elsevier, vol. 22(C), pages 282-284.
    4. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    5. Hickman, Robin & Ashiru, Olu & Banister, David, 2011. "Transitions to low carbon transport futures: strategic conversations from London and Delhi," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1553-1562.
    6. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    7. Kejun, Jiang & Chenmin, He & Songli, Zhu & Pianpian, Xiang & Sha, Chen, 2021. "Transport scenarios for China and the role of electric vehicles under global 2 °C/1.5 °C targets," Energy Economics, Elsevier, vol. 103(C).
    8. Alonso-Carrera, Jaime & Raurich, Xavier, 2015. "Demand-based structural change and balanced economic growth," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 359-374.
    9. J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
    10. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    11. Tammy M. Thompson & Sebastian Rausch & Rebecca K. Saari & Noelle E. Selin, 2014. "A systems approach to evaluating the air quality co-benefits of US carbon policies," Nature Climate Change, Nature, vol. 4(10), pages 917-923, October.
    12. Greening, Lorna A., 2004. "Effects of human behavior on aggregate carbon intensity of personal transportation: comparison of 10 OECD countries for the period 1970-1993," Energy Economics, Elsevier, vol. 26(1), pages 1-30, January.
    13. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    14. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    15. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    16. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    17. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
    18. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Ülengin, Burç & Aktas, Emel, 2010. "A problem-structuring model for analyzing transportation-environment relationships," European Journal of Operational Research, Elsevier, vol. 200(3), pages 844-859, February.
    19. Pan, Xunzhang & Wang, Hailin & Wang, Lining & Chen, Wenying, 2018. "Decarbonization of China's transportation sector: In light of national mitigation toward the Paris Agreement goals," Energy, Elsevier, vol. 155(C), pages 853-864.
    20. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    21. Mendiluce, María & Schipper, Lee, 2011. "Trends in passenger transport and freight energy use in Spain," Energy Policy, Elsevier, vol. 39(10), pages 6466-6475, October.
    22. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    23. Roinioti, Argiro & Koroneos, Christopher, 2017. "The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 448-459.
    24. Mazzarino, Marco, 2000. "The economics of the greenhouse effect: evaluating the climate change impact due to the transport sector in Italy," Energy Policy, Elsevier, vol. 28(13), pages 957-966, November.
    25. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    2. Usman Akbar & József Popp & Hameed Khan & Muhammad Asif Khan & Judit Oláh, 2020. "Energy Efficiency in Transportation along with the Belt and Road Countries," Energies, MDPI, vol. 13(10), pages 1-20, May.
    3. Jennings, Mark & Ó Gallachóir, Brian P. & Schipper, Lee, 2013. "Irish passenger transport: Data refinements, international comparisons, and decomposition analysis," Energy Policy, Elsevier, vol. 56(C), pages 151-164.
    4. Jing Li & Hong Fang & Siran Fang & Zhiming Zhang & Pengyuan Zhang, 2021. "Embodied Energy Use in China’s Transportation Sector: A Multi-Regional Input–Output Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, July.
    5. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    6. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    7. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    8. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    9. Xu, Xun & Chase, Nicholas & Peng, Tianduo, 2021. "Economic structural change and freight transport demand in China," Energy Policy, Elsevier, vol. 158(C).
    10. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    11. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    13. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
    14. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    15. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    16. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
    17. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    18. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    19. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    20. Liu, Junling & Yin, Mingjian & Xia-Hou, Qinrui & Wang, Ke & Zou, Ji, 2021. "Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2 °C targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12960-:d:938158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.