Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2020.104707
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yoruk, BarIs K. & Zaim, Osman, 2005. "Productivity growth in OECD countries: A comparison with Malmquist indices," Journal of Comparative Economics, Elsevier, vol. 33(2), pages 401-420, June.
- Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017.
"Aggregate green productivity growth in OECD’s countries,"
International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
- Zhiyang Shen & Jean-Philippe Boussemart & Hervé Leleu, 2015. "Aggregate green productivity growth in OECD’s countries," Working Papers 2016-EQM-03, IESEG School of Management.
- Zhiyang Shen & Jean-Philippe Boussemart & Herve Leleu, 2017. "Aggregate green productivity growth in OECD’s countries," Post-Print hal-01744590, HAL.
- F J Arcelus & P Arocena, 2005. "Productivity differences across OECD countries in the presence of environmental constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1352-1362, December.
- Wang, Ke & Wei, Yi-Ming, 2016.
"Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator,"
Energy Economics, Elsevier, vol. 54(C), pages 50-59.
- Ke Wang & Yi-Ming Wei, 2015. "Sources of energy productivity change in China during 1997-2012: A decomposition analysis based on the Luenberger productivity indicator," CEEP-BIT Working Papers 86, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(3), pages 249-283.
- Rolf Färe & Carlos Martins-Filho & Michael Vardanyan, 2010.
"On functional form representation of multi-output production technologies,"
Journal of Productivity Analysis, Springer, vol. 33(2), pages 81-96, April.
- R. Fare & C. Martins-Filho & M. Vardanyan, 2010. "On functional form representation of multi-output production technologies," Post-Print hal-00800130, HAL.
- Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
- Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
- Fare, Rolf & Grosskopf, Shawna & Weber, William L., 2006. "Shadow prices and pollution costs in U.S. agriculture," Ecological Economics, Elsevier, vol. 56(1), pages 89-103, January.
- Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
- Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
- Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
- Yang, Hongliang & Pollitt, Michael, 2009.
"Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants,"
European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
- Yang, H. & Pollitt, M., 2007. "Incorporating Both Undesirable Outputs and Uncontrollable Variables into DEA: the Performance of Chinese Coal-Fired Power Plants," Cambridge Working Papers in Economics 0733, Faculty of Economics, University of Cambridge.
- Hongliang Yang & Michael Pollitt, 2007. "Incorporating both Undesirable Outputs and Uncontrollable Variables into DEA: the performance of Chinese Coal-Fired Power Plants," Working Papers EPRG 0712, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Ananda, Jayanath & Hampf, Benjamin, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Ecological Economics, Elsevier, vol. 116(C), pages 211-219.
- Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
- Christoph Bremberger & Francisca Bremberger & Mikulas Luptacik & Stephan Schmitt, 2015. "Regulatory impact of environmental standards on the eco-efficiency of firms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 421-433, March.
- Hampf, Benjamin & Ananda, Jayanath, 2015. "Measuring environmentally sensitive productivity growth: An application to the urban water sector," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77008, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
- Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
- Watanabe, Michio & Tanaka, Katsuya, 2007. "Efficiency analysis of Chinese industry: A directional distance function approach," Energy Policy, Elsevier, vol. 35(12), pages 6323-6331, December.
- Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
- Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
- Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
- Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
- Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
- Hwang, Won-Sik & Lee, Jeong-Dong, 2013. "Profitability and productivity changes in the Korean electricity industry," Energy Policy, Elsevier, vol. 52(C), pages 531-542.
- Wang, Chunhua, 2007. "Decomposing energy productivity change: A distance function approach," Energy, Elsevier, vol. 32(8), pages 1326-1333.
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
- Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
- Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
- Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
- Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
- Gollop, Frank M & Roberts, Mark J, 1983.
"Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation,"
Journal of Political Economy, University of Chicago Press, vol. 91(4), pages 654-674, August.
- Frank M. Gollop & Mark J. Roberts, 1982. "Environmental Regulations and Productivity Growth: The Case of Fossil-Fueled Electric Power Generation," Boston College Working Papers in Economics 114, Boston College Department of Economics.
- Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
- Frank Gollop & Gregory P. Swinand, 2001. "Total Resource Productivity. Accounting for Changing Environmental Quality," NBER Chapters, in: New Developments in Productivity Analysis, pages 587-608, National Bureau of Economic Research, Inc.
- Xie, Bai-Chen & Gao, Jie & Zhang, Shuang & Pang, Rui-Zhi & Zhang, ZhongXiang, 2018. "The environmental efficiency analysis of China’s power generation sector based on game cross-efficiency approach," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 126-135.
- Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
- Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
- Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
- Xian, Yujiao & Yu, Dan & Wang, Ke & Yu, Jian & Huang, Zhimin, 2022. "Capturing the least costly measure of CO2 emission abatement: Evidence from the iron and steel industry in China," Energy Economics, Elsevier, vol. 106(C).
- Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
- Tomas Balezentis & Kristiaan Kerstens & Zhiyang Shen, 2022. "Economic and Environmental Decomposition of Luenberger-Hicks-Moorsteen Total Factor Productivity Indicator: Empirical Analysis of Chinese Textile Firms With a Focus on Reporting Infeasibilities and Qu," Post-Print hal-03833245, HAL.
- Qunli Wu & Shuting Gu, 2021. "Exploring the focus of future CO2 emission reduction in China's industrial sectors," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 682-696, August.
- Ying Feng & Ching-Cheng Lu & I-Fang Lin & An-Chi Yang & Po-Chun Lin, 2022. "Total Factor Energy Efficiency of China’s Thermal Power Industry," Sustainability, MDPI, vol. 14(1), pages 1-16, January.
- Yelin Dai & Yue Liu & Xuhui Ding & Chundu Wu & Yu Chen, 2022. "Environmental Regulation Promotes Eco-Efficiency through Industrial Transfer: Evidence from the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 19(16), pages 1-31, August.
- Chen, Bin & Yan, Jun & Zhu, Xun & Liu, Yue, 2023. "The potential role of renewable power penetration in energy intensity reduction: Evidence from the Chinese provincial electricity sector," Energy Economics, Elsevier, vol. 127(PB).
- Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
- Zhiyang Shen & Kristiaan Kerstens & Tomas Baležentis, 2023. "An environmental Luenberger–Hicks–Moorsteen total factor productivity indicator: empirical analysis considering undesirable outputs either as inputs or outputs, and attention for infeasibilities," Post-Print hal-04273656, HAL.
- Wang, Yihan & Wen, Zongguo & Lv, Xiaojun & Zhu, Junming, 2023. "The regional discrepancies in the contribution of China’s thermal power plants toward the carbon peaking target," Applied Energy, Elsevier, vol. 337(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).
- Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
- Du, Limin & Hanley, Aoife & Wei, Chu, 2015.
"Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis,"
Energy Economics, Elsevier, vol. 48(C), pages 217-229.
- Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO2 emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).
- Jayanath Ananda & Dong-hyun Oh, 2023. "Assessing environmentally sensitive productivity growth: incorporating externalities and heterogeneity into water sector evaluations," Journal of Productivity Analysis, Springer, vol. 59(1), pages 45-60, February.
- Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
- Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
- Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
- Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
- Shen, Zhiyang & Boussemart, Jean-Philippe & Leleu, Hervé, 2017.
"Aggregate green productivity growth in OECD’s countries,"
International Journal of Production Economics, Elsevier, vol. 189(C), pages 30-39.
- Zhiyang Shen & Jean-Philippe Boussemart & Hervé Leleu, 2015. "Aggregate green productivity growth in OECD’s countries," Working Papers 2016-EQM-03, IESEG School of Management.
- Zhiyang Shen & Jean-Philippe Boussemart & Herve Leleu, 2017. "Aggregate green productivity growth in OECD’s countries," Post-Print hal-01744590, HAL.
- Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
- Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
- Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
- Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.
- Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
- Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
- Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
- Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
- Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
- Zhao, Yu & Zhong, Honglin & Kong, Fanbin & Zhang, Ning, 2023. "Can China achieve carbon neutrality without power shortage? A substitutability perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
More about this item
Keywords
CO2 emission; Productivity change; Marginal abatement cost; Thermal power sector;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:87:y:2020:i:c:s0140988320300463. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.