IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v269y2023ics0360544223001706.html
   My bibliography  Save this article

How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning

Author

Listed:
  • Shi, Changfeng
  • Zhi, Jiaqi
  • Yao, Xiao
  • Zhang, Hong
  • Yu, Yue
  • Zeng, Qingshun
  • Li, Luji
  • Zhang, Yuxi

Abstract

This paper studied the carbon peak through the cross-analysis of low-carbon economics and deep learning. The STIRPAT model and ridge regression was used to distinguish and rank the importance of influencing factors to carbon emissions. In addition, an innovative GA-LSTM model was constructed for prediction. It combined the scenario analysis to explore the path of China's low-carbon development. The results showed that China's carbon emissions have been showing a growing trend, and among the many influencing factors, only the technological level had an inhibitory effect on carbon emissions. China's carbon peak will be reached around 2030 under all three scenarios of benchmark, steady growth, and green development, with peak values of 11.82, 11.94, and 11.64 billion tons, respectively. Meanwhile, there was a big difference in the rate of change in China's carbon emissions before and after the carbon peak. The rising-rate was faster before the carbon emission peak, while the decline rate was slower after the peak. This paper argued that China should start from the energy consumption structure and industrial structure to promote the development of emission reduction work and, at the same time, vigorously promote the effect of the technological level of emission reduction.

Suggested Citation

  • Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001706
    DOI: 10.1016/j.energy.2023.126776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223001706
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126776?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    3. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    4. Li, Na & Zhang, Xiaoling & Shi, Minjun & Zhou, Shenglv, 2017. "The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 11-22.
    5. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    6. Jing Wu & Rayman Mohamed & Zheng Wang, 2017. "An Agent-Based Model to Project China’s Energy Consumption and Carbon Emission Peaks at Multiple Levels," Sustainability, MDPI, vol. 9(6), pages 1-19, May.
    7. Xie, Qichang & Liu, Junxian, 2019. "Combined nonlinear effects of economic growth and urbanization on CO2 emissions in China: Evidence from a panel data partially linear additive model," Energy, Elsevier, vol. 186(C).
    8. Meng, Ming & Niu, Dongxiao & Shang, Wei, 2012. "CO2 emissions and economic development: China's 12th five-year plan," Energy Policy, Elsevier, vol. 42(C), pages 468-475.
    9. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    10. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    11. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    12. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    13. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    14. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    15. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    16. Wu, Yu-Xi & Wu, Qing-Biao & Zhu, Jia-Qi, 2019. "Improved EEMD-based crude oil price forecasting using LSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 114-124.
    17. Jie Chen & Yujie Liu & Ermei Zhang & Tao Pan & Yanhua Liu, 2022. "Estimating China’s Population over 21st Century: Spatially Explicit Scenarios Consistent with the Shared Socioeconomic Pathways (SSPs)," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    18. Song, Malin & Wang, Shuhong & Yu, Huayin & Yang, Li & Wu, Jie, 2011. "To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5129-5134.
    19. Li, Huanan & Mu, Hailin & Zhang, Ming & Li, Nan, 2011. "Analysis on influence factors of China's CO2 emissions based on Path–STIRPAT model," Energy Policy, Elsevier, vol. 39(11), pages 6906-6911.
    20. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    21. Yao Qian & Lang Sun & Quanyi Qiu & Lina Tang & Xiaoqi Shang & Chengxiu Lu, 2020. "Analysis of CO 2 Drivers and Emissions Forecast in a Typical Industry-Oriented County: Changxing County, China," Energies, MDPI, vol. 13(5), pages 1-21, March.
    22. Tang, Baojun & Li, Ru & Yu, Biying & An, Runying & Wei, Yi-Ming, 2018. "How to peak carbon emissions in China's power sector: A regional perspective," Energy Policy, Elsevier, vol. 120(C), pages 365-381.
    23. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    24. Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
    25. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
    26. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    27. Huafang Huang & Xiaomao Wu & Xianfu Cheng, 2021. "The Prediction of Carbon Emission Information in Yangtze River Economic Zone by Deep Learning," Land, MDPI, vol. 10(12), pages 1-23, December.
    28. Xu, Lei & Chen, Nengcheng & Chen, Zeqiang, 2017. "Will China make a difference in its carbon intensity reduction targets by 2020 and 2030?," Applied Energy, Elsevier, vol. 203(C), pages 874-882.
    29. Wang, Ping & Wu, Wanshui & Zhu, Bangzhu & Wei, Yiming, 2013. "Examining the impact factors of energy-related CO2 emissions using the STIRPAT model in Guangdong Province, China," Applied Energy, Elsevier, vol. 106(C), pages 65-71.
    30. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    31. Zhang, Ning & Yu, Keren & Chen, Zhongfei, 2017. "How does urbanization affect carbon dioxide emissions? A cross-country panel data analysis," Energy Policy, Elsevier, vol. 107(C), pages 678-687.
    32. B. H. Samset & J. S. Fuglestvedt & M. T. Lund, 2020. "Delayed emergence of a global temperature response after emission mitigation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    33. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    34. Zhang, Yan & Zhang, Jinyun & Yang, Zhifeng & Li, Shengsheng, 2011. "Regional differences in the factors that influence China’s energy-related carbon emissions, and potential mitigation strategies," Energy Policy, Elsevier, vol. 39(12), pages 7712-7718.
    35. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
    36. Xu, Haitao & Pan, Xiongfeng & Guo, Shucen & Lu, Yuduo, 2021. "Forecasting Chinese CO2 emission using a non-linear multi-agent intertemporal optimization model and scenario analysis," Energy, Elsevier, vol. 228(C).
    37. Mason, Karl & Duggan, Jim & Howley, Enda, 2018. "Forecasting energy demand, wind generation and carbon dioxide emissions in Ireland using evolutionary neural networks," Energy, Elsevier, vol. 155(C), pages 705-720.
    38. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2020. "Adjusting energy consumption structure to achieve China's CO2 emissions peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    39. Xiwen Cui & Shaojun E & Dongxiao Niu & Bosong Chen & Jiaqi Feng, 2021. "Forecasting of Carbon Emission in China Based on Gradient Boosting Decision Tree Optimized by Modified Whale Optimization Algorithm," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangyi Li & Lan Yang & Shuang Huang & Yangqing Liu & Chenyang Guo, 2023. "The Effects of Urban Sprawl on Electricity Consumption: Empirical Evidence from 283 Prefecture-Level Cities in China," Land, MDPI, vol. 12(8), pages 1-27, August.
    2. Xu, Zhongwen & Tan, Shiqi & Yao, Liming & Lv, Chengwei, 2024. "Exploring water-saving potentials of US electric power transition while thirsting for carbon neutrality," Energy, Elsevier, vol. 292(C).
    3. Meng, Qingwei & Sun, Hao & Fang, Fang, 2023. "Stochastic performance evaluation method of wind power DC bus voltage control system," Renewable Energy, Elsevier, vol. 219(P1).
    4. Di, Kaisheng & Chen, Weidong & Shi, Qiumei & Cai, Quanling & Liu, Sichen, 2024. "Analysing the impact of coupled domestic demand dynamics of green and low-carbon consumption in the market based on SEM-ANN," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    5. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    6. Chong Zhang & Ignacio Mauleón, 2023. "Assessing the Energy Efficiency Gains and Savings in China’s 2060 Carbon-Neutral Plan," Energies, MDPI, vol. 16(19), pages 1-16, September.
    7. Lei Xu & Zhenzhen Lu & Zhiping Kang & Yingwen Duan & Junwei Zhang, 2023. "Carbon Emission Intensity and Its Abatement Choices: A Case of China Eastern," Sustainability, MDPI, vol. 15(23), pages 1-16, November.
    8. Zuochun Fan & Mei Tian & Man Li & Yidi Mi & Yue Jiang & Tao Song & Jinxin Cao & Zheyu Liu, 2024. "Assessment of CO 2 Sequestration Capacity in a Low-Permeability Oil Reservoir Using Machine Learning Methods," Energies, MDPI, vol. 17(16), pages 1-13, August.
    9. Bo Yang & Yulin Li & Wei Yao & Lin Jiang & Chuanke Zhang & Chao Duan & Yaxing Ren, 2023. "Optimization and Control of New Power Systems under the Dual Carbon Goals: Key Issues, Advanced Techniques, and Perspectives," Energies, MDPI, vol. 16(9), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Qingshun & Shi, Changfeng & Zhu, Wenjun & Zhi, Jiaqi & Na, Xiaohong, 2023. "Sequential data-driven carbon peaking path simulation research of the Yangtze River Delta urban agglomeration based on semantic mining and heuristic algorithm optimization," Energy, Elsevier, vol. 285(C).
    2. Tan, Feifei & Lu, Zhaohua, 2015. "Current status and future choices of regional sectors-energy-related CO2 emissions: The third economic growth pole of China," Applied Energy, Elsevier, vol. 159(C), pages 237-251.
    3. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    4. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    5. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    6. Miao, Ankang & Yuan, Yue & Wu, Han & Ma, Xin & Shao, Chenyu & Xiang, Sheng, 2024. "Pathway for China's provincial carbon emission peak: A case study of the Jiangsu Province," Energy, Elsevier, vol. 298(C).
    7. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    8. Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
    9. Xuankai Deng & Yanhua Yu & Yanfang Liu, 2015. "Effect of Construction Land Expansion on Energy-Related Carbon Emissions: Empirical Analysis of China and Its Provinces from 2001 to 2011," Energies, MDPI, vol. 8(6), pages 1-22, June.
    10. Zhang, Wei & Wang, Nan, 2021. "Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment," Energy, Elsevier, vol. 221(C).
    11. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    12. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    13. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ren, Hongtao & Ma, Tieju, 2022. "How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?," Energy, Elsevier, vol. 256(C).
    14. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    15. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    16. Song, Yi & Huang, Jianbai & Zhang, Yijun & Wang, Zhiping, 2019. "Drivers of metal consumption in China: An input-output structural decomposition analysis," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    17. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    18. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    19. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    20. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2018. "How can Chile move away from a high carbon economy?," Energy Economics, Elsevier, vol. 69(C), pages 350-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:269:y:2023:i:c:s0360544223001706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.