IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223014500.html
   My bibliography  Save this article

Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability

Author

Listed:
  • Han, Mengyao
  • Xiong, Jiao
  • Yang, Yu

Abstract

Natural gas was a type of alternative energy resources in the short and medium term to maintain energy consumption worldwide. Combining multi-regional input-output analysis and complex network modelling, this study examined the spatial-temporal evolution and topological structures of multi-layer natural gas networks, analyzed the network characteristics of different countries/regions, and tested the network robustness and vulnerability between direct natural gas trade network and embodied natural gas transfer network. From the results, the direct natural gas trade network was relatively flatter, while the embodied natural gas transfer network was more concentrated in core countries/regions. Moreover, the countries with natural gas reserves and highly industrialized levels occupied high statuses in the direct natural gas trade network, whereas the highly industrialized countries occupied the core position in the embodied natural gas transfer network. Among the two disturbance scenarios, both direct and embodied natural gas networks were more vulnerable under deliberate assault than under random failure, however, the direct trade network is easier to collapse compared with the embodied transfer network under deliberate assault. By constructing multi-layer natural gas networks from both direct and embodied perspectives, this study attempts to provide practical implications and suggestions toward sustainable natural gas network management worldwide.

Suggested Citation

  • Han, Mengyao & Xiong, Jiao & Yang, Yu, 2023. "Comparisons between direct and embodied natural gas networks: Topology, dependency and vulnerability," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223014500
    DOI: 10.1016/j.energy.2023.128056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223014500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    2. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    3. Wu, X.F. & Chen, G.Q., 2019. "Global overview of crude oil use: From source to sink through inter-regional trade," Energy Policy, Elsevier, vol. 128(C), pages 476-486.
    4. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    5. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
    6. Chapman, P. F., 1974. "1. Energy costs: a review of methods," Energy Policy, Elsevier, vol. 2(2), pages 91-103, June.
    7. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    8. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    9. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).
    10. Song, Zhouying & Zhu, Qiaoling & Han, Mengyao, 2021. "Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows," Energy, Elsevier, vol. 217(C).
    11. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    12. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    13. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    14. Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi, 2018. "A systematic framework of vulnerability analysis of a natural gas pipeline network," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 79-91.
    15. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
    16. Chen, B. & Li, J.S. & Wu, X.F. & Han, M.Y. & Zeng, L. & Li, Z. & Chen, G.Q., 2018. "Global energy flows embodied in international trade: A combination of environmentally extended input–output analysis and complex network analysis," Applied Energy, Elsevier, vol. 210(C), pages 98-107.
    17. Szymula, Christopher & Bešinović, Nikola, 2020. "Passenger-centered vulnerability assessment of railway networks," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 30-61.
    18. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    19. Han, Mengyao & Chen, Guoqian, 2018. "Global arable land transfers embodied in Mainland China’s foreign trade," Land Use Policy, Elsevier, vol. 70(C), pages 521-534.
    20. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    21. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    22. Egging, Ruud & Holz, Franziska, 2016. "Risks in global natural gas markets: Investment, hedging and trade," Energy Policy, Elsevier, vol. 94(C), pages 468-479.
    23. Han, M.Y. & Chen, G.Q. & Dunford, M., 2019. "Land use balance for urban economy: A multi-scale and multi-type perspective," Land Use Policy, Elsevier, vol. 83(C), pages 323-333.
    24. Lenzen, Manfred & Moran, Daniel & Bhaduri, Anik & Kanemoto, Keiichiro & Bekchanov, Maksud & Geschke, Arne & Foran, Barney, 2013. "International trade of scarce water," Ecological Economics, Elsevier, vol. 94(C), pages 78-85.
    25. Li, Jiaman & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin & Liu, Guixian, 2021. "Natural gas trade network of countries and regions along the belt and road: Where to go in the future?," Resources Policy, Elsevier, vol. 71(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Mengyao & Li, Weilong, 2024. "Tele-connecting renewable energy availability from production to consumption via multi-national supply chains," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhouying & Zhu, Qiaoling & Han, Mengyao, 2021. "Tele-connection of global crude oil network: Comparisons between direct trade and embodied flows," Energy, Elsevier, vol. 217(C).
    2. Kan, S.Y. & Chen, B. & Wu, X.F. & Chen, Z.M. & Chen, G.Q., 2019. "Natural gas overview for world economy: From primary supply to final demand via global supply chains," Energy Policy, Elsevier, vol. 124(C), pages 215-225.
    3. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
    4. Yue Fu & Long Xue & Yixin Yan & Yao Pan & Xiaofang Wu & Ying Shao, 2021. "Energy Network Embodied in Trade along the Belt and Road: Spatiotemporal Evolution and Influencing Factors," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    5. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    6. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    7. Jinghan Chen & Wen Zhou & Hongtao Yang, 2019. "Is Embodied Energy a Better Starting Point for Solving Energy Security Issues?—Based on an Overview of Embodied Energy-Related Research," Sustainability, MDPI, vol. 11(16), pages 1-22, August.
    8. Usubiaga-Liaño, Arkaitz & Arto, Iñaki & Acosta-Fernández, José, 2021. "Double accounting in energy footprint and related assessments: How common is it and what are the consequences?," Energy, Elsevier, vol. 222(C).
    9. Mengyao Han & Shuchang Li, 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis," Land, MDPI, vol. 10(2), pages 1-16, February.
    10. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    11. Zahraee, Seyed Mojib & Rahimpour Golroudbary, Saeed & Shiwakoti, Nirajan & Stasinopoulos, Peter, 2021. "Particle-Gaseous pollutant emissions and cost of global biomass supply chain via maritime transportation: Full-scale synergy model," Applied Energy, Elsevier, vol. 303(C).
    12. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    13. Xiaoyu Niu & Wei Chen & Nyuying Wang, 2023. "Spatiotemporal Dynamics and Topological Evolution of the Global Crude Oil Trade Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
    14. Yuping Jin & Yanbin Yang & Wei Liu, 2022. "Finding Global Liquefied Natural Gas Potential Trade Relations Based on Improved Link Prediction," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    15. Chen, Wei & Niu, Xiaoyu & Ke, Wenqian & Yu, Zhaoyuan, 2023. "Investigating the energy trade networks in the Belt and Road regions: Structures and evolution," Energy, Elsevier, vol. 283(C).
    16. Zhang, Shuai & Yang, Dewei & Ji, Yijia & Meng, Haishan & Zhou, Tian & Zhang, Junmei & Yang, Hang, 2024. "Spatio-temporal patterns and cascading risks of embodied energy flows in China," Energy, Elsevier, vol. 298(C).
    17. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    18. Jinghui Liu & Tingting Geng & Xingwei Wang & Guojin Qin, 2020. "Determinants of Oil Footprints Embodied in Sino-US Trade: A Perspective from the Globalizing World," Energies, MDPI, vol. 13(15), pages 1-26, July.
    19. Zhijun Feng & Wen Zhou & Qian Ming, 2019. "Embodied Energy Flow Patterns of the Internal and External Industries of Manufacturing in China," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    20. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2023. "Globalization of forest land use: Increasing threats on climate-vulnerable regions," Land Use Policy, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223014500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.