IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp354-364.html
   My bibliography  Save this article

Energy efficiency as a means to expand energy access: A Uganda roadmap

Author

Listed:
  • de la Rue du Can, Stephane
  • Pudleiner, David
  • Pielli, Katrina

Abstract

While energy efficiency can contribute significantly towards improving access to modern energy services, energy sector investments in many developing countries have largely focused on increasing energy access by increasing supply. This is because the links between energy efficiency and energy access, is often overlooked. This oversight of energy efficiency is frequently a missed opportunity, as efficiency is often a very cost-effective energy resource. In combination with grid expansion and new clean energy generation, efficiency efforts can help to ensure that reliable power is provided to the maximum number of customers at a lower cost than would be required to increase generation alone.

Suggested Citation

  • de la Rue du Can, Stephane & Pudleiner, David & Pielli, Katrina, 2018. "Energy efficiency as a means to expand energy access: A Uganda roadmap," Energy Policy, Elsevier, vol. 120(C), pages 354-364.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:354-364
    DOI: 10.1016/j.enpol.2018.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    4. Bukarica, Vesna & Tomšić, Željko, 2017. "Energy efficiency policy evaluation by moving from techno-economic towards whole society perspective on energy efficiency market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 968-975.
    5. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    6. Jollands, Nigel & Waide, Paul & Ellis, Mark & Onoda, Takao & Laustsen, Jens & Tanaka, Kanako & de T'Serclaes, Philippine & Barnsley, Ingrid & Bradley, Rick & Meier, Alan, 2010. "The 25 IEA energy efficiency policy recommendations to the G8 Gleneagles Plan of Action," Energy Policy, Elsevier, vol. 38(11), pages 6409-6418, November.
    7. Hoffman, Ian M. & Goldman, Charles A. & Rybka, Gregory & Leventis, Greg & Schwartz, Lisa & Sanstad, Alan H. & Schiller, Steven, 2017. "Estimating the cost of saving electricity through U.S. utility customer-funded energy efficiency programs," Energy Policy, Elsevier, vol. 104(C), pages 1-12.
    8. Steve Sorrell & Eoin O’Malley, 2004. "The Economics of Energy Efficiency," Books, Edward Elgar Publishing, number 2607.
    9. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447.
    10. Satchwell, Andrew & Cappers, Peter & Goldman, Charles, 2011. "Carrots and sticks: A comprehensive business model for the successful achievement of energy efficiency resource standards," Utilities Policy, Elsevier, vol. 19(4), pages 218-225.
    11. Craig, Christopher A. & Feng, Song, 2017. "Exploring utility organization electricity generation, residential electricity consumption, and energy efficiency: A climatic approach," Applied Energy, Elsevier, vol. 185(P1), pages 779-790.
    12. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    13. Jeong, Jaewook & Hong, Taehoon & Ji, Changyoon & Kim, Jimin & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan, 2017. "Development of a prediction model for the cost saving potentials in implementing the building energy efficiency rating certification," Applied Energy, Elsevier, vol. 189(C), pages 257-270.
    14. Sanstad, Alan H. & McMenamin, Stuart & Sukenik, Andrew & Barbose, Galen L. & Goldman, Charles A., 2014. "Modeling an aggressive energy-efficiency scenario in long-range load forecasting for electric power transmission planning," Applied Energy, Elsevier, vol. 128(C), pages 265-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    3. Qin, Quande & Yu, Ying & Liu, Yuan & Zhou, Jianqing & Chen, Xiude, 2023. "Industrial agglomeration and energy efficiency: A new perspective from market integration," Energy Policy, Elsevier, vol. 183(C).
    4. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    5. Olukorede Tijani Adenuga & Khumbulani Mpofu & Ragosebo Kgaugelo Modise, 2022. "Energy–Carbon Emissions Nexus Causal Model towards Low-Carbon Products in Future Transport-Manufacturing Industries," Energies, MDPI, vol. 15(17), pages 1-13, August.
    6. Saunders, Harry D. & Roy, Joyashree & Azevedo, Inês M.L. & Chakravarty, Debalina & Dasgupta, Shyamasree & De La Rue Du Can, Stephane & Druckman, Angela & Fouquet, Roger & Grubb, Michael & Lin, Boqiang, 2021. "Energy efficiency: what has research delivered in the last 40 years?," LSE Research Online Documents on Economics 114344, London School of Economics and Political Science, LSE Library.
    7. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    8. Meron Tesfamichael & Edson Twinomujuni & Mbeo Ogeya & Silver Ssebagala & Yacob Mulugetta, 2022. "Barriers to the institutionalization of industrial energy efficiency in Africa: A case study from Uganda," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    9. Partha Gangopadhyay & Narasingha Das, 2022. "Can Energy Efficiency Promote Human Development in a Developing Economy?," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    10. Butera, Federico Maria & Caputo, Paola & Adhikari, Rajendra Singh & Mele, Renata, 2019. "Energy access in informal settlements. Results of a wide on site survey in Rio De Janeiro," Energy Policy, Elsevier, vol. 134(C).
    11. Popkova, Elena G. & Sergi, Bruno S., 2021. "Energy efficiency in leading emerging and developed countries," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Partha Gangopadhyay & Narasingha Das, 2022. "Can Energy Efficiency Promote Human Development in a Developing Economy?," Sustainability, MDPI, vol. 14(21), pages 1-20, November.
    2. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2020. "Cost-effectiveness of energy efficiency investments for high renewable electricity systems," Energy, Elsevier, vol. 198(C).
    3. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    4. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
    5. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    6. Safarzadeh, Soroush & Hafezalkotob, Ashkan & Jafari, Hamed, 2022. "Energy supply chain empowerment through tradable green and white certificates: A pathway to sustainable energy generation," Applied Energy, Elsevier, vol. 323(C).
    7. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    8. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.
    11. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    12. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    13. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2022. "Institutional quality and its spatial spillover effects on energy efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    14. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    15. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    16. Bartlomiej Gawin & Bartosz Marcinkowski, 2020. "Setting up Energy Efficiency Management in Companies: Preliminary Lessons Learned from the Petroleum Industry," Energies, MDPI, vol. 13(21), pages 1-16, October.
    17. Safarzadeh, Soroush & Rasti-Barzoki, Morteza, 2019. "A game theoretic approach for assessing residential energy-efficiency program considering rebound, consumer behavior, and government policies," Applied Energy, Elsevier, vol. 233, pages 44-61.
    18. Nehler, Therese, 2018. "Linking energy efficiency measures in industrial compressed air systems with non-energy benefits – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 72-87.
    19. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    20. Mette Talseth Solnørdal & Elin Anita Nilsen, 2020. "From Program to Practice: Translating Energy Management in a Manufacturing Firm," Sustainability, MDPI, vol. 12(23), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:354-364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.