IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v298y2021ics0306261921006115.html
   My bibliography  Save this article

Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel

Author

Listed:
  • Yao, Shuting
  • Wang, Jiansheng
  • Liu, Xueling

Abstract

As an efficient cooling method, the convective heat transfer in nanochannel has been widely utilized in thermal management of various energy systems. However, the effects of surface roughness on velocity slip and flow resistance in nanochannel are still unclear. The effects of rough morphology and wall-fluid interaction on the flow and thermal characteristics in rectangular nanochannel are probed with molecular dynamics method. The results show that nanostructure morphology and wall-fluid interaction induce distinct variations in temperature jump and velocity slip, which further determine the heat and momentum exchange between the channel wall and fluid. Specifically, rough morphology is responsible for the augments of heat transfer and flow resistance, which is derived from limitation on the motion of fluid atoms by the nanostructure grooves in channel. In comparison, the strong wall-fluid interaction brings about the improvement of heat transfer and the increase of flow resistance, which owes to the adsorption enhancement. As the nanostructure free shear ratio increases from 0.1875 to 0.75, the flow resistance increases and heat transfer performance weakens. Yet, the combination of rough morphology and wall-fluid interaction is significant for overall heat transfer performance. The overall heat transfer performance in rough channel with the weak wall-fluid interaction is superior. The Nusselt number in rough channel only decreases by 1.78% while the resistance coefficient reduces by 27.1%. The optimal overall performance is achieved in rough channel with the nanostructure free shear ratio of 0.1875.

Suggested Citation

  • Yao, Shuting & Wang, Jiansheng & Liu, Xueling, 2021. "Role of wall-fluid interaction and rough morphology in heat and momentum exchange in nanochannel," Applied Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006115
    DOI: 10.1016/j.apenergy.2021.117183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921006115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prakash, Jyoti & Roan, Daryn & Tauqir, Wajeha & Nazir, Hassan & Ali, Majid & Kannan, Arunachala, 2019. "Off-grid solar thermal water heating system using phase-change materials: design, integration and real environment investigation," Applied Energy, Elsevier, vol. 240(C), pages 73-83.
    2. Wang, Qiuwang & Zeng, Min & Ma, Ting & Du, Xueping & Yang, Jianfeng, 2014. "Recent development and application of several high-efficiency surface heat exchangers for energy conversion and utilization," Applied Energy, Elsevier, vol. 135(C), pages 748-777.
    3. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    4. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    5. Wu, Zan & Cao, Zhen & Sundén, Bengt, 2019. "Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition," Applied Energy, Elsevier, vol. 249(C), pages 286-299.
    6. Edalatpour, M. & Liu, L. & Jacobi, A.M. & Eid, K.F. & Sommers, A.D., 2018. "Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation," Applied Energy, Elsevier, vol. 222(C), pages 967-992.
    7. Prieto, Cristina & Cabeza, Luisa F., 2019. "Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance," Applied Energy, Elsevier, vol. 254(C).
    8. Mwesigye, Aggrey & Huan, Zhongjie & Meyer, Josua P., 2015. "Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid," Applied Energy, Elsevier, vol. 156(C), pages 398-412.
    9. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    10. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    11. Zhao, Bing-chen & Cheng, Mao-song & Liu, Chang & Dai, Zhi-min, 2017. "Cyclic thermal characterization of a molten-salt packed-bed thermal energy storage for concentrating solar power," Applied Energy, Elsevier, vol. 195(C), pages 761-773.
    12. Jothi Prakash, C.G. & Prasanth, R., 2018. "Enhanced boiling heat transfer by nano structured surfaces and nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4028-4043.
    13. Nie, Wenjie & Lü, Ke & Chen, Aixi & He, Jizhou & Lan, Yueheng, 2018. "Performance optimization of single and two-stage micro/nano-scaled heat pumps with internal and external irreversibilities," Applied Energy, Elsevier, vol. 232(C), pages 695-703.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    2. Rasoul Fallahzadeh & Fabio Bozzoli & Luca Cattani & Niloofar Naeimabadi, 2024. "A Comprehensive Review on Molecular Dynamics Simulations of Forced Convective Heat Transfer in Nanochannels," Energies, MDPI, vol. 17(17), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    2. Li, Wei & Dai, Renkun & Zeng, Min & Wang, Qiuwang, 2020. "Review of two types of surface modification on pool boiling enhancement: Passive and active," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Sun, Yalong & Tang, Yong & Zhang, Shiwei & Yuan, Wei & Tang, Heng, 2022. "A review on fabrication and pool boiling enhancement of three-dimensional complex structures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Bailera, Manuel & Pascual, Sara & Lisbona, Pilar & Romeo, Luis M., 2021. "Modelling calcium looping at industrial scale for energy storage in concentrating solar power plants," Energy, Elsevier, vol. 225(C).
    6. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    7. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    8. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    9. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    10. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    11. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    12. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    13. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    14. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    15. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    16. Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
    17. Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
    18. Hongyu Zhang & Fei Gan & Guangqin Huang & Chunlong Zhuang & Xiaodong Shen & Shengbo Li & Lei Cheng & Shanshan Hou & Ningge Xu & Zhenqun Sang, 2022. "Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering," Energies, MDPI, vol. 15(15), pages 1-31, August.
    19. Xiaoyan Zhang & Ziyi Han & Lang Liu & Xiang Xia & Qingjiang Liu & Yiran Duan & Xuan Wang, 2023. "Experimental Study on Mechanical and Thermal Properties of Backfill Body with Paraffin Added," Energies, MDPI, vol. 17(1), pages 1-13, December.
    20. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.