IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp830-839.html
   My bibliography  Save this article

A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies

Author

Listed:
  • Choi, Jun-Ki
  • Bakshi, Bhavik R.
  • Hubacek, Klaus
  • Nader, Jordan

Abstract

A novel generic sequential input–output framework is developed to model the economy-wide changes in resource consumption and environmental emissions as a result of combined applied energy policies, e.g. taxes for non-renewables and subsidies for renewables. Many input–output analyses are based on a single period analysis. However, in the case of analyzing the effects of multiple policy interventions over time, the input–output table reflecting the state of the economy before the energy policy was introduced cannot be used for analyzing the economic effects of another policy intervention in the next time period since the monetary and physical transaction of commodities have already been affected. To show the efficacy of the proposed method, a case study is developed that introduced a gasoline tax and earmarks the revenues to subsidize biofuel production in the subsequent time period in the United States. In order to assess the change of environmental indicators after sequential policy interventions, Ecologically-based Life Cycle Analysis (ECO-LCA) inventories which include data on resource consumption, emissions, ecosystem goods and services related to the U.S. economic sectors are adopted. The environmentally extended input–output framework is ideally suited to model the interlinkages between a range for environmental indicators and detailed structural economic information at the sector level for the analysis of energy policies. The proposed framework can be utilized as a tool for leveraging the energy and environmental policy trade-off decisions which consider the impacts to resource consumption and environmental emissions. Our results show that, if a share of the gasoline tax revenue is reinvested to subsidize biofuel production, economy wide resource consumptions and emissions from the fossil fuel related supply chains will decrease. However, ecosystem goods and services such as soil erosion, water consumption for agricultural and livestock, cropland, nitrogen deposition along with the emissions such as nitrous oxide and ammonia will increase in short term as a consequence of the price drop and the increased demand for biofuels. This emphasizes the importance of focusing on a wide range of environmental outcomes and unintended side effects when introducing a specific environmental policy.

Suggested Citation

  • Choi, Jun-Ki & Bakshi, Bhavik R. & Hubacek, Klaus & Nader, Jordan, 2016. "A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies," Applied Energy, Elsevier, vol. 184(C), pages 830-839.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:830-839
    DOI: 10.1016/j.apenergy.2016.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Jun-Ki & Morrison, Drew & Hallinan, Kevin P. & Brecha, Robert J., 2014. "Economic and environmental impacts of community-based residential building energy efficiency investment," Energy, Elsevier, vol. 78(C), pages 877-886.
    2. Sterner, Thomas, 2007. "Fuel taxes: An important instrument for climate policy," Energy Policy, Elsevier, vol. 35(6), pages 3194-3202, June.
    3. Henrik Hammar & Löfgren Åsa & Thomas Sterner, 2004. "Political Economy Obstacles to Fuel Taxation," The Energy Journal, , vol. 25(3), pages 1-17, July.
    4. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    5. Cheng, Yung-Hsiang & Chang, Yu-Hern & Lu, I.J., 2015. "Urban transportation energy and carbon dioxide emission reduction strategies," Applied Energy, Elsevier, vol. 157(C), pages 953-973.
    6. Trefler, Daniel, 1993. "International Factor Price Differences: Leontief Was Right!," Journal of Political Economy, University of Chicago Press, vol. 101(6), pages 961-987, December.
    7. Bhavik Bakshi & Mitchell J. Small, 2011. "Incorporating Ecosystem Services Into Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 15(4), pages 477-478, August.
    8. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    9. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    10. Henrik Hammar, Asa Lofgren and Thomas Sterner, 2004. "Political Economy Obstacles to Fuel Taxation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-18.
    11. Hubacek, Klaus & Giljum, Stefan, 2003. "Applying physical input-output analysis to estimate land appropriation (ecological footprints) of international trade activities," Ecological Economics, Elsevier, vol. 44(1), pages 137-151, February.
    12. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    13. Stefan Giljum & Klaus Hubacek, 2004. "Alternative Approaches of Physical Input-Output Analysis to Estimate Primary Material Inputs of Production and Consumption Activities," Economic Systems Research, Taylor & Francis Journals, vol. 16(3), pages 301-310.
    14. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    15. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    16. Hondo, Hiroki & Sakai, Shinsuke & Tanno, Shiro, 2002. "Sensitivity analysis of total CO2 emission intensities estimated using an input-output table," Applied Energy, Elsevier, vol. 72(3-4), pages 689-704, July.
    17. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    18. Spees, Kathleen & Lave, Lester B., 2007. "Demand Response and Electricity Market Efficiency," The Electricity Journal, Elsevier, vol. 20(3), pages 69-85, April.
    19. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    20. Molly Espey, 1996. "Explaining the Variation in Elasticity Estimates of Gasoline Demand in the United States: A Meta-Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 49-60.
    21. Vito Albino & Erik Dietzenbacher & Silvana Kuhtz, 2003. "Analysing Materials and Energy Flows in an Industrial District using an Enterprise Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 15(4), pages 457-480.
    22. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
    23. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rastogi, Ankush & Choi, Jun-Ki & Hong, Taehoon & Lee, Minhyun, 2017. "Impact of different LEED versions for green building certification and energy efficiency rating system: A Multifamily Midrise case study," Applied Energy, Elsevier, vol. 205(C), pages 732-740.
    2. Feng, Kuishuang & Hubacek, Klaus & Liu, Yu & Marchán, Estefanía & Vogt-Schilb, Adrien, 2018. "Managing the distributional effects of energy taxes and subsidy removal in Latin America and the Caribbean," Applied Energy, Elsevier, vol. 225(C), pages 424-436.
    3. Rocco, Matteo V. & Forcada Ferrer, Rafael J. & Colombo, Emanuela, 2018. "Understanding the energy metabolism of World economies through the joint use of Production- and Consumption-based energy accountings," Applied Energy, Elsevier, vol. 211(C), pages 590-603.
    4. Lv, J. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Li, X. & Li, Y., 2022. "Planning energy economy and eco-environment nexus system under uncertainty: A copula-based stochastic multi-level programming method," Applied Energy, Elsevier, vol. 312(C).
    5. Lin, Boqiang & Kuang, Yunming, 2020. "Natural gas subsidies in the industrial sector in China: National and regional perspectives," Applied Energy, Elsevier, vol. 260(C).
    6. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    7. Mardones, Cristian & Mena, Camilo, 2020. "Effects of the internalization of the social cost of global and local air pollutants in Chile," Energy Policy, Elsevier, vol. 147(C).
    8. Koelbl, Barbara S. & van den Broek, Machteld A. & Wilting, Harry C. & Sanders, Mark W.J.L. & Bulavskaya, Tatyana & Wood, Richard & Faaij, André P.C. & van Vuuren, Detlef P., 2016. "Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 257-277.
    9. Chang, Kai & Xue, Chenqi & Zhang, Huijia & Zeng, Yonghong, 2022. "The effects of green fiscal policies and R&D investment on a firm's market value: New evidence from the renewable energy industry in China," Energy, Elsevier, vol. 251(C).
    10. Mardones, Cristian & García, Catalina, 2020. "Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants," Energy, Elsevier, vol. 206(C).
    11. Mardones, Cristian & Baeza, Nicolas, 2018. "Economic and environmental effects of a CO2 tax in Latin American countries," Energy Policy, Elsevier, vol. 114(C), pages 262-273.
    12. Cristian Mardones & Tamara Muñoz, 2018. "Environmental taxation for reducing greenhouse gases emissions in Chile: an input–output analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2545-2563, December.
    13. Ju, Yiyi & Fujikawa, Kiyoshi, 2019. "Modeling the cost transmission mechanism of the emission trading scheme in China," Applied Energy, Elsevier, vol. 236(C), pages 172-182.
    14. Llop, Maria, 2020. "Energy import costs in a flexible input-output price model," Resource and Energy Economics, Elsevier, vol. 59(C).
    15. Rocco, Matteo V. & Golinucci, Nicolò & Ronco, Stefano M. & Colombo, Emanuela, 2020. "Fighting carbon leakage through consumption-based carbon emissions policies: Empirical analysis based on the World Trade Model with Bilateral Trades," Applied Energy, Elsevier, vol. 274(C).
    16. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    17. Li, Zhengda & Zheng, Chengxin & Liu, Aimin & Yang, Yang & Yuan, Xiaoling, 2022. "Environmental taxes, green subsidies, and cleaner production willingness: Evidence from China's publicly traded companies," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    18. Yuan, Rong & Rodrigues, João F.D. & Tukker, Arnold & Behrens, Paul, 2018. "The impact of the expansion in non-fossil electricity infrastructure on China’s carbon emissions," Applied Energy, Elsevier, vol. 228(C), pages 1994-2008.
    19. Choi, Jun-Ki & Eom, Jiyong & McClory, Emma, 2018. "Economic and environmental impacts of local utility-delivered industrial energy-efficiency rebate programs," Energy Policy, Elsevier, vol. 123(C), pages 289-298.
    20. Shengnan Xing & Jindian Lu & Chengmei Zhang & Shuang Sun, 2019. "Does line loss broaden the deviation between the added value of industry and the industrial electricity consumption in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1635-1648, August.
    21. Ma, Ning & Li, Huajiao & Zhang, Jinwei & Han, Xiaodan & Feng, Sida & Arif, Asma, 2021. "The short-term price effects and transmission mechanism of CO2 cost pass-through in China: A partial transmission model," Resources Policy, Elsevier, vol. 70(C).
    22. Genovaitė Liobikienė & Mindaugas Butkus & Kristina Matuzevičiūtė, 2019. "The Contribution of Energy Taxes to Climate Change Policy in the European Union (EU)," Resources, MDPI, vol. 8(2), pages 1-23, April.
    23. Tharinya Supasa & Shu-San Hsiau & Shih-Mo Lin & Wongkot Wongsapai & Jiunn-Chi Wu, 2017. "Household Energy Consumption Behaviour for Different Demographic Regions in Thailand from 2000 to 2010," Sustainability, MDPI, vol. 9(12), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    2. Agostini, Claudio A. & Jiménez, Johanna, 2015. "The distributional incidence of the gasoline tax in Chile," Energy Policy, Elsevier, vol. 85(C), pages 243-252.
    3. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    4. Shanjun Li & Joshua Linn & Erich Muehlegger, 2014. "Gasoline Taxes and Consumer Behavior," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 302-342, November.
    5. Scheitrum, Daniel, 2017. "Renewable Natural Gas as a Solution to Climate Goals: Response to California's Low Carbon Fuel Standard," MPRA Paper 77193, University Library of Munich, Germany.
    6. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    7. Tilov, Ivan & Weber, Sylvain, 2023. "Heterogeneity in price elasticity of vehicle kilometers traveled: Evidence from micro-level panel data," Energy Economics, Elsevier, vol. 127(PA).
    8. O'Rear, Eric G. & Sarica, Kemal & Tyner, Wallace E., 2015. "Analysis of impacts of alternative policies aimed at increasing US energy independence and reducing GHG emissions," Transport Policy, Elsevier, vol. 37(C), pages 121-133.
    9. Ian W. H. Parry & Kenneth A. Small, 2005. "Does Britain or the United States Have the Right Gasoline Tax?," American Economic Review, American Economic Association, vol. 95(4), pages 1276-1289, September.
    10. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.
    11. Andrew, Robbie & Forgie, Vicky, 2008. "A three-perspective view of greenhouse gas emission responsibilities in New Zealand," Ecological Economics, Elsevier, vol. 68(1-2), pages 194-204, December.
    12. Wu, X.F. & Chen, G.Q., 2018. "Coal use embodied in globalized world economy: From source to sink through supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 978-993.
    13. Anderson, Soren T., 2012. "The demand for ethanol as a gasoline substitute," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 151-168.
    14. de Carvalho, Ariovaldo Lopes & Antunes, Carlos Henggeler & Freire, Fausto, 2016. "Economic-energy-environment analysis of prospective sugarcane bioethanol production in Brazil," Applied Energy, Elsevier, vol. 181(C), pages 514-526.
    15. Behrens, Paul & Rodrigues, João F.D. & Brás, Tiago & Silva, Carlos, 2016. "Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010," Applied Energy, Elsevier, vol. 173(C), pages 309-319.
    16. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
    17. Sene, Seydina Ousmane, 2012. "Estimating the demand for gasoline in developing countries: Senegal," Energy Economics, Elsevier, vol. 34(1), pages 189-194.
    18. Ngui, Dianah & Mutua, John & Osiolo, Hellen & Aligula, Eric, 2011. "Household energy demand in Kenya: An application of the linear approximate almost ideal demand system (LA-AIDS)," Energy Policy, Elsevier, vol. 39(11), pages 7084-7094.
    19. Litman, Todd, 2013. "Changing North American vehicle-travel price sensitivities: Implications for transport and energy policy," Transport Policy, Elsevier, vol. 28(C), pages 2-10.
    20. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:830-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.