IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v286y2021ics0306261921000295.html
   My bibliography  Save this article

Urban-scale carbon footprint evaluation based on citizen travel demand in Japan

Author

Listed:
  • Li, Xi
  • Zhang, Runsen
  • Chen, Jundong
  • Jiang, Yida
  • Zhang, Qiong
  • Long, Yin

Abstract

Considering its substantial and increasing contribution to global climate change, the household sector shows potential for larger carbon reductions. Among different household activities, household individual travel demands due to private or public transportation affect the environment via both direct or indirect emissions. To develop insights from a city-level perspective, carbon emissions released due to household travel demands in 47 Japanese cities were estimated in this study using the most recent available data. Given the differences in traveling preferences, spatial distribution and cluster analyses by city were also conducted. The results indicate that cities with a larger carbon footprint usually had a smaller population, whereas in megacities, less carbon per capita was released. The direct combustion of gasoline and train use were the most important factors influencing regional differences in direct and indirect emissions, respectively. The findings also indicate that customized carbon mitigation strategies that consider individual preferences and city size have a better chance of achieving decarbonization of citizen transportation in Japan.

Suggested Citation

  • Li, Xi & Zhang, Runsen & Chen, Jundong & Jiang, Yida & Zhang, Qiong & Long, Yin, 2021. "Urban-scale carbon footprint evaluation based on citizen travel demand in Japan," Applied Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000295
    DOI: 10.1016/j.apenergy.2021.116462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921000295
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xu & Wang, Xiaojun, 2016. "Effects of carbon emission reduction policies on transportation mode selections with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 196-205.
    2. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    3. Mi, Zhifu & Zheng, Jiali & Meng, Jing & Zheng, Heran & Li, Xian & Coffman, D'Maris & Woltjer, Johan & Wang, Shouyang & Guan, Dabo, 2019. "Carbon emissions of cities from a consumption-based perspective," Applied Energy, Elsevier, vol. 235(C), pages 509-518.
    4. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    5. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    6. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    7. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    8. Shigetomi, Yosuke & Nansai, Keisuke & Kagawa, Shigemi & Tohno, Susumu, 2015. "Trends in Japanese households' critical-metals material footprints," Ecological Economics, Elsevier, vol. 119(C), pages 118-126.
    9. Keisuke Nansai & Kenichi Nakajima & Sangwon Suh & Shigemi Kagawa & Yasushi Kondo & Wataru Takayanagi & Yosuke Shigetomi, 2017. "The role of primary processing in the supply risks of critical metals," Economic Systems Research, Taylor & Francis Journals, vol. 29(3), pages 335-356, July.
    10. Musti, Sashank & Kockelman, Kara M., 2011. "Evolution of the household vehicle fleet: Anticipating fleet composition, PHEV adoption and GHG emissions in Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 707-720, October.
    11. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    12. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    13. Keisuke Nansai & Shigemi Kagawa & Yasushi Kondo & Sangwon Suh & Rokuta Inaba & Kenichi Nakajima, 2009. "Improving The Completeness Of Product Carbon Footprints Using A Global Link Input-Output Model: The Case Of Japan," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 267-290.
    14. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    15. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    16. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    17. Yang, Yuan & Wang, Can & Liu, Wenling & Zhou, Peng, 2018. "Understanding the determinants of travel mode choice of residents and its carbon mitigation potential," Energy Policy, Elsevier, vol. 115(C), pages 486-493.
    18. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Fraser & Pinar Temocin, 2021. "Grassroots vs. greenhouse: the role of environmental organizations in reducing carbon emissions," Climatic Change, Springer, vol. 169(3), pages 1-21, December.
    2. Valdelamar-Villegas Juan Carlos & Fajardo-Herrera Reinaldo, 2023. "An approach to acquiring knowledge of the personal carbon footprint in Cartagena, in the Colombian Caribbean region," Environmental & Socio-economic Studies, Sciendo, vol. 11(3), pages 65-72, September.
    3. Jiayu Yang & Xinhui Feng & Yan Li & Congying He & Shiyi Wang & Feng Li, 2024. "How Does Urban Scale Influence Carbon Emissions?," Land, MDPI, vol. 13(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    2. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    3. Long, Yin & Yoshida, Yoshikuni & Meng, Jing & Guan, Dabo & Yao, Liming & Zhang, Haoran, 2019. "Unequal age-based household emission and its monthly variation embodied in energy consumption – A cases study of Tokyo, Japan," Applied Energy, Elsevier, vol. 247(C), pages 350-362.
    4. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    5. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    6. Xiaoyu Liu & Xian’en Wang & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "Why Are the Carbon Footprints of China’s Urban Households Rising? An Input–Output Analysis and Structural Decomposition Analysis," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    7. Mukaramah Harun, 2020. "Pursuing More Sustainable Energy Consumption by Analyzing Sectoral Direct and Indirect Energy Use in Malaysia: An Input-Output Analysis," Papers 2001.02508, arXiv.org.
    8. Zhipeng Tang & Shuang Wu & Jialing Zou, 2020. "Consumption substitution and change of household indirect energy consumption in China between 1997 and 2012," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-19, August.
    9. Long, Yin & Yoshida, Yoshikuni, 2018. "Quantifying city-scale emission responsibility based on input-output analysis – Insight from Tokyo, Japan," Applied Energy, Elsevier, vol. 218(C), pages 349-360.
    10. Long, Yin & Dong, Liang & Yoshida, Yoshikuni & Li, Zhaoling, 2018. "Evaluation of energy-related household carbon footprints in metropolitan areas of Japan," Ecological Modelling, Elsevier, vol. 377(C), pages 16-25.
    11. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    12. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    13. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    14. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    15. Lenzen, Manfred & Dey, Christopher & Foran, Barney, 2004. "Energy requirements of Sydney households," Ecological Economics, Elsevier, vol. 49(3), pages 375-399, July.
    16. Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    17. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    18. Chen, Shaoqing & Long, Huihui & Chen, Bin & Feng, Kuishuang & Hubacek, Klaus, 2020. "Urban carbon footprints across scale: Important considerations for choosing system boundaries," Applied Energy, Elsevier, vol. 259(C).
    19. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    20. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.