Energy Intensity Forecasting Models for Manufacturing Industries of “Catching Up” Economies: Lithuanian Case
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Karen Fisher-Vanden & Yong Hu & Gary Jefferson & Michael Rock & Michael Toman, 2016.
"Factors Influencing Energy Intensity in Four Chinese Industries,"
The Energy Journal, , vol. 37(1_suppl), pages 153-178, January.
- Karen Fisher-Vanden, Yong Hu, Gary Jefferson, Michael Rock and Michael Toman, 2016. "Factors influencing energy intensity in four Chinese industries," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
- Fisher-Vanden, Karen & Hu, Yong & Jefferson, Gary & Rock, Michael & Toman, Michael, 2013. "Factors influencing energy intensity in four Chinese industries," Policy Research Working Paper Series 6551, The World Bank.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Huang, Junbing & Wang, Yajun & Luan, Bingjiang & Zou, Hong & Wang, Jun, 2023. "The energy intensity reduction effect of developing digital economy: Theory and empirical evidence from China," Energy Economics, Elsevier, vol. 128(C).
- Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tang, Le & Jefferson, Gary, 2024. "A DSGE model of energy efficiency with vintage capital in Chinese industry," Economic Modelling, Elsevier, vol. 132(C).
- Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
- Wu, F. & Zhou, P. & Zhou, D.Q., 2020. "Modeling carbon emission performance under a new joint production technology with energy input," Energy Economics, Elsevier, vol. 92(C).
- Le Tang, 2020. "Energy prices and investment in energy efficiency: evidence from Chinese industry 1997–2004," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 34(2), pages 93-105, November.
- Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
- Lin, Boqiang & Xu, Mengmeng, 2019. "Quantitative assessment of factors affecting energy intensity from sector, region and time perspectives using decomposition method: A case of China’s metallurgical industry," Energy, Elsevier, vol. 189(C).
- Fan, Wei & Huang, Shasha & Xu, Yiyin & Zhu, Chunxia & Chen, Jiandong, 2023. "Drivers of global energy export dependency: A decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Shuxing Chen & Xiangyang Du & Junbing Huang & Cheng Huang, 2019. "The Impact of Foreign and Indigenous Innovations on the Energy Intensity of China’s Industries," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
- Zhou, P. & Zhang, H. & Zhang, L.P., 2022. "The drivers of energy intensity changes in Chinese cities: A production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 307(C).
- Kuosmanen, Natalia & Maczulskij, Terhi, 2022.
"The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing,"
ETLA Working Papers
99, The Research Institute of the Finnish Economy.
- Kuosmanen, Natalia & Maczulskij, Terhi, 2023. "The Role of Firm Dynamics in the Green Transition: Carbon Productivity Decomposition in Finnish Manufacturing," IZA Discussion Papers 15865, Institute of Labor Economics (IZA).
- Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
- Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
- Xie, Xuan & Lin, Boqiang, 2019. "Understanding the energy intensity change in China's food industry: A comprehensive decomposition method," Energy Policy, Elsevier, vol. 129(C), pages 53-68.
- Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
- Xiekui Zhang & Peiyao Liu & Hongfei Zhu, 2022. "The Impact of Industrial Intelligence on Energy Intensity: Evidence from China," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
- Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
- Shichun Xu & Yongmei Miao & Yiwen Li & Yifeng Zhou & Xiaoxue Ma & Zhengxia He & Bin Zhao & Shuxiao Wang, 2019. "What Factors Drive Air Pollutants in China? An Analysis from the Perspective of Regional Difference Using a Combined Method of Production Decomposition Analysis and Logarithmic Mean Divisia Index," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
- Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
- Chenyu Dai & Fengliang Liu, 2023. "Impact of Energy Productivity and Industrial Structural Change on Energy Intensity in China: Analysis Based on Provincial Panel Data," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
- Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
More about this item
Keywords
energy intensity; time series techniques; manufacturing industries; case study;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:12:p:2860-:d:1412626. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.