IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v174y2023ics0301421523000253.html
   My bibliography  Save this article

Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS

Author

Listed:
  • Hu, Yingying
  • Wu, Wei

Abstract

Carbon capture and storage (CCS) is an essential technology in the portfolio of emission mitigation solutions. The trade-off between fossil energy substitution and CCS has essential implications for achieving carbon-neutral at an affordable cost. This study couples the technology cost curve of CCS with a dynamic computable general equilibrium (DCGE) model and explores the carbon emission scale, energy structure, and emission abatement cost in the path of carbon neutrality under different CCS penetration scenarios. The results illustrate that the emission abatement cost increases fast if only relying on the emission trading scheme (ETS). Even at a high carbon price (3500 CNY/Ton), the net carbon dioxide emission will remain at 1.5 Gt in 2060, and the average emission abatement cost is 1211 CNY/Ton. The realization of net-zero emission requires synergy between ETS and CCS. The integration of CCS can significantly alleviate the economic cost when the emission mitigation scale is more remarkable than 5.2 Gt/year. The average emission abatement cost in 2060 is 557CNY/Ton under the high CCS penetration (4.3 Gt/year) and low carbon price (700CNY/Ton) carbon-neutral scenario.

Suggested Citation

  • Hu, Yingying & Wu, Wei, 2023. "Can fossil energy make a soft landing?— the carbon-neutral pathway in China accompanying CCS," Energy Policy, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:enepol:v:174:y:2023:i:c:s0301421523000253
    DOI: 10.1016/j.enpol.2023.113440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523000253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    2. Durmaz, Tunç, 2018. "The economics of CCS: Why have CCS technologies not had an international breakthrough?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 328-340.
    3. Jingpu Song & Mingming Leng, 2012. "Analysis of the Single-Period Problem under Carbon Emissions Policies," International Series in Operations Research & Management Science, in: Tsan-Ming Choi (ed.), Handbook of Newsvendor Problems, edition 127, chapter 0, pages 297-313, Springer.
    4. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    5. Yang, Lisha & Li, Yutianhao & Liu, Hongxun, 2021. "Did carbon trade improve green production performance? Evidence from China," Energy Economics, Elsevier, vol. 96(C).
    6. Jiang, Kai & Ashworth, Peta, 2021. "The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Cui, Qi & Liu, Yu & Ali, Tariq & Gao, Ji & Chen, Hao, 2020. "Economic and climate impacts of reducing China's renewable electricity curtailment: A comparison between CGE models with alternative nesting structures of electricity," Energy Economics, Elsevier, vol. 91(C).
    8. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    9. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    10. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    11. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Liang, Xi & Sun, Yan & Angus, Daniel, 2020. "China's carbon capture, utilization and storage (CCUS) policy: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Fan, Jing-Li & Wei, Shijie & Yang, Lin & Wang, Hang & Zhong, Ping & Zhang, Xian, 2019. "Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China," Energy, Elsevier, vol. 176(C), pages 143-155.
    13. Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
    14. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," Energy Economics, Elsevier, vol. 70(C), pages 45-60.
    15. Corinne Le Quéré & Robert B. Jackson & Matthew W. Jones & Adam J. P. Smith & Sam Abernethy & Robbie M. Andrew & Anthony J. De-Gol & David R. Willis & Yuli Shan & Josep G. Canadell & Pierre Friedlingst, 2020. "Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement," Nature Climate Change, Nature, vol. 10(7), pages 647-653, July.
    16. Li, Wei & Jia, Zhijie & Zhang, Hongzhi, 2017. "The impact of electric vehicles and CCS in the context of emission trading scheme in China: A CGE-based analysis," Energy, Elsevier, vol. 119(C), pages 800-816.
    17. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    18. Michael Wara, 2007. "Is the global carbon market working?," Nature, Nature, vol. 445(7128), pages 595-596, February.
    19. Viebahn, Peter & Vallentin, Daniel & Höller, Samuel, 2014. "Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment," Applied Energy, Elsevier, vol. 117(C), pages 62-75.
    20. Riahi, Keywan & Rubin, Edward S. & Taylor, Margaret R. & Schrattenholzer, Leo & Hounshell, David, 2004. "Technological learning for carbon capture and sequestration technologies," Energy Economics, Elsevier, vol. 26(4), pages 539-564, July.
    21. Duan, Hongbo & Mo, Jianlei & Fan, Ying & Wang, Shouyang, 2018. "Achieving China's energy and climate policy targets in 2030 under multiple uncertainties," LSE Research Online Documents on Economics 86481, London School of Economics and Political Science, LSE Library.
    22. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    23. Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
    24. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    25. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    26. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    27. Yihsu Chen & Chung-Li Tseng, 2011. "Inducing Clean Technology in the Electricity Sector: Tradable Permits or Carbon Tax Policies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 169-174.
    28. Jiang, Kai & Ashworth, Peta & Zhang, Shiyi & Hu, Guoping, 2022. "Print media representations of carbon capture utilization and storage (CCUS) technology in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    29. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    30. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    31. Angel Aguiar & Maksym Chepeliev & Erwin L. Corong & Robert McDougall & Dominique van der Mensbrugghe, 2019. "The GTAP Data Base: Version 10," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 4(1), pages 1-27, June.
    32. Selosse, Sandrine & Ricci, Olivia, 2017. "Carbon capture and storage: Lessons from a storage potential and localization analysis," Applied Energy, Elsevier, vol. 188(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    2. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Wang, Zhaohua & Zhang, Hongzhi & Li, Hao & Wang, Bo & Cui, Qi & Zhang, Bin, 2022. "Economic impact and energy transformation of different effort-sharing schemes to pursue 2 ℃ warming limit in China," Applied Energy, Elsevier, vol. 320(C).
    4. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).
    5. Feng, Shenghao & Peng, Xiujian & Adams, Philip & Jiang, Dalin & Waschik, Robert, 2024. "Economic implications of carbon neutrality in China: A dynamic general equilibrium analysis," Economic Modelling, Elsevier, vol. 135(C).
    6. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    7. Dongdong Song & Tong Jiang & Chuanping Rao, 2022. "Review of Policy Framework for the Development of Carbon Capture, Utilization and Storage in China," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    8. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    9. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    10. Jia, Zhijie & Lin, Boqiang & Wen, Shiyan, 2022. "Electricity market Reform: The perspective of price regulation and carbon neutrality," Applied Energy, Elsevier, vol. 328(C).
    11. Lin, Boqiang & Liu, Zhiwei, 2024. "Assessment of China's flexible power investment value in the emission trading system," Applied Energy, Elsevier, vol. 359(C).
    12. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    13. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying & Liu, Yu, 2019. "Achieving grid parity of wind power in China – Present levelized cost of electricity and future evolution," Applied Energy, Elsevier, vol. 250(C), pages 1053-1064.
    14. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    15. Zhong, Zhiqi & Chen, Yongqiang & Fu, Meiyan & Li, Minzhen & Yang, Kaishuo & Zeng, Lingping & Liang, Jing & Ma, Rupeng & Xie, Quan, 2023. "Role of CO2 geological storage in China's pledge to carbon peak by 2030 and carbon neutrality by 2060," Energy, Elsevier, vol. 272(C).
    16. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian & Li, Fengyu, 2019. "How can carbon capture utilization and storage be incentivized in China? A perspective based on the 45Q tax credit provisions," Energy Policy, Elsevier, vol. 132(C), pages 1229-1240.
    17. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    18. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    19. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    20. Qiong Chen & Hongyu Zhang & Yui-Yip Lau & Tianni Wang & Wen Wang & Guangsheng Zhang, 2023. "Climate Change, Carbon Peaks, and Carbon Neutralization: A Bibliometric Study from 2006 to 2023," Sustainability, MDPI, vol. 15(7), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:174:y:2023:i:c:s0301421523000253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.