IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i20p14785-d1258238.html
   My bibliography  Save this article

Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process

Author

Listed:
  • Wenxiang Peng

    (School of Economics and Finance, University Town Campus, South China University of Technology, 382 Waihuan East Road, Panyu District, Guangzhou 510006, China)

  • Yutao Lei

    (School of Economics and Finance, University Town Campus, South China University of Technology, 382 Waihuan East Road, Panyu District, Guangzhou 510006, China)

  • Xuan Zhang

    (School of Economics and Finance, University Town Campus, South China University of Technology, 382 Waihuan East Road, Panyu District, Guangzhou 510006, China)

Abstract

In order to realize the coordinated development of digitalization and low-carbon emissions, it is important to understand the carbon implications of the digitization of the high-carbon manufacturing (HCM) industry; therefore, this paper focuses on studying the formation and change mechanism of China’s HCM carbon emissions in the digital process. Specifically, based on input–output and energy data, we not only compute the carbon emissions embodied in the digital process of various HCM subsectors and analyze their temporal changes but also reveal the change mechanism by identifying their supply chain tiers and crucial transfer paths. The results show that (1) the digital process of HCM can reduce carbon emissions; (2) the carbon emissions embodied in the digital process of HCM are increasing with time and shifting from low-supply chain tiers to high-supply chain tiers; and (3) the embodied emissions, supply chain tiers, and crucial paths in the digital process of HCM show spatial heterogeneity. We suggest that attention should be paid to increasing embodied emissions in the supply chain tiers and regional differences during the acceleration of HCM digitization, followed by the implementation of appropriate digital carbon neutral policies.

Suggested Citation

  • Wenxiang Peng & Yutao Lei & Xuan Zhang, 2023. "Analysis of China’s High-Carbon Manufacturing Industry’s Carbon Emissions in the Digital Process," Sustainability, MDPI, vol. 15(20), pages 1-35, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14785-:d:1258238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/20/14785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/20/14785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    2. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    3. Elahi, Ehsan & Khalid, Zainab & Tauni, Muhammad Zubair & Zhang, Hongxia & Lirong, Xing, 2022. "Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan," Technovation, Elsevier, vol. 117(C).
    4. Yawei Qi & Wenxiang Peng & Ran Yan & Guangping Rao & Abd E.I.-Baset Hassanien, 2021. "Use of BP Neural Networks to Determine China’s Regional CO2 Emission Quota," Complexity, Hindawi, vol. 2021, pages 1-14, January.
    5. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    6. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    7. Lenzen, Manfred, 2003. "Environmentally important paths, linkages and key sectors in the Australian economy," Structural Change and Economic Dynamics, Elsevier, vol. 14(1), pages 1-34, March.
    8. Jaana Remes, Jan Mischke and Mekala Krishnan, 2018. "Solving the Productivity Puzzle: The Role of Demand and the Promise of Digitization," International Productivity Monitor, Centre for the Study of Living Standards, vol. 34, pages 28-51, Fall.
    9. Anne Owen & Richard Wood & John Barrett & Andrew Evans, 2016. "Explaining value chain differences in MRIO databases through structural path decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 243-272, June.
    10. Gang Li & Sen Lai & Mengyu Lu & Yonghong Li, 2023. "Digitalization, Carbon Productivity and Technological Innovation in Manufacturing—Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    11. Dehghan Shabani, Zahra & Shahnazi, Rouhollah, 2019. "Energy consumption, carbon dioxide emissions, information and communications technology, and gross domestic product in Iranian economic sectors: A panel causality analysis," Energy, Elsevier, vol. 169(C), pages 1064-1078.
    12. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    13. Elahi, Ehsan & Khalid, Zainab & Zhang, Zhixin, 2022. "Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture," Applied Energy, Elsevier, vol. 309(C).
    14. Laura van Oers & Evelien de Hoop & Eric Jolivet & Simon Marvin & Philipp Spaeth & Rob Raven, 2020. "The politics of smart expectations: Interrogating the knowledge claims of smart mobility," Post-Print hal-03648079, HAL.
    15. Hao, Yu & Li, Ying & Guo, Yunxia & Chai, Jingxia & Yang, Chuxiao & Wu, Haitao, 2022. "Digitalization and electricity consumption: Does internet development contribute to the reduction in electricity intensity in China?," Energy Policy, Elsevier, vol. 164(C).
    16. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    17. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    18. Zhang, Yuwei & Zhang, Yingjie & Zhu, Hengxi & Zhou, Pengxiang & Liu, Shuai & Lei, Xiaoli & Li, Yanhong & Li, Bin & Ning, Ping, 2022. "Life cycle assessment of pollutants and emission reduction strategies based on the energy structure of the nonferrous metal industry in China," Energy, Elsevier, vol. 261(PA).
    19. Yuli Shan & Ya Zhou & Jing Meng & Zhifu Mi & Jingru Liu & Dabo Guan, 2019. "Peak cement‐related CO2 emissions and the changes in drivers in China," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 959-971, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2019. "How information and communication technology drives carbon emissions: A sector-level analysis for China," Energy Economics, Elsevier, vol. 81(C), pages 380-392.
    2. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    3. Lin, Boqiang & Huang, Chenchen, 2023. "How will promoting the digital economy affect electricity intensity?," Energy Policy, Elsevier, vol. 173(C).
    4. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    5. Zhaoxue Gai & Ying Xu & Guoming Du, 2023. "Spatio-Temporal Differentiation and Driving Factors of Carbon Storage in Cultivated Land-Use Transition," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    6. Zhu, Qingyuan & Xu, Chengzhen & Pan, Yinghao & Wu, Jie, 2024. "Identifying critical transmission sectors, paths, and carbon communities for CO2 mitigation in global supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    8. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    9. Du Peng & Ehsan Elahi & Zainab Khalid, 2023. "Productive Service Agglomeration, Human Capital Level, and Urban Economic Performance," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    10. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    11. Huitao Shen & Tao Zhang & Yanxia Zhao & Aibin Wu & Zhenhua Zheng & Jiansheng Cao, 2023. "Effects of Precipitation Variation on Annual and Winter Soil Respiration in a Semiarid Mountain Shrubland in Northern China," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    12. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    13. Yan Zhao & Ehsan Elahi & Zainab Khalid & Xuegang Sun & Fang Sun, 2023. "Environmental, Social and Governance Performance: Analysis of CEO Power and Corporate Risk," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    14. Min Zhu & Mengqi Sun & Ehsan Elahi & Yajie Li & Zainab Khalid, 2023. "Analyzing the Relationship between Green Finance and Agricultural Industrial Upgrading: A Panel Data Study of 31 Provinces in China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    15. David Font Vivanco & Ranran Wang & Sebastiaan Deetman & Edgar Hertwich, 2019. "Unraveling the Nexus: Exploring the Pathways to Combined Resource Use," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 241-252, February.
    16. Wang, Ke-Liang & Sun, Ting-Ting & Xu, Ru-Yu & Miao, Zhuang & Cheng, Yun-He, 2022. "How does internet development promote urban green innovation efficiency? Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Kasin Ransikarbum & Wattana Chanthakhot & Tony Glimm & Jettarat Janmontree, 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool," Resources, MDPI, vol. 12(4), pages 1-22, April.
    18. Gang Li & Ehsan Elahi & Xingshuai Wang, 2023. "Population age structure, asset price, and financial stability," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(4), pages 2041-2056, June.
    19. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    20. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:20:p:14785-:d:1258238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.