IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v149y2021ics0301421520306534.html
   My bibliography  Save this article

Evaluating a light duty vehicle fleet against climate change mitigation targets under different scenarios up to 2050 on a national level

Author

Listed:
  • Raymand, Farhang
  • Ahmadi, Pouria
  • Mashayekhi, Sina

Abstract

Transportation sector makes up a big share of every country's greenhouse gas (GHG) emissions. The light duty vehicle (LDV) sub-sector, in particular, has experienced a substantial growth in recent years without showing signs of slowing down. Regulations coupled with incentives that make alternate-powertrain vehicles more attractive financially, have become a key policy to keep emissions from this sector in check.

Suggested Citation

  • Raymand, Farhang & Ahmadi, Pouria & Mashayekhi, Sina, 2021. "Evaluating a light duty vehicle fleet against climate change mitigation targets under different scenarios up to 2050 on a national level," Energy Policy, Elsevier, vol. 149(C).
  • Handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520306534
    DOI: 10.1016/j.enpol.2020.111942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520306534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    2. Aryanpur, Vahid & Atabaki, Mohammad Saeid & Marzband, Mousa & Siano, Pierluigi & Ghayoumi, Kiarash, 2019. "An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 58-74.
    3. Cosimo Magazzino, 2016. "The relationship between real GDP, CO2 emissions, and energy use in the GCC countries: A time series approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1152729-115, December.
    4. Aryanpur, Vahid & Shafiei, Ehsan, 2015. "Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions," Energy, Elsevier, vol. 91(C), pages 882-893.
    5. Nordhaus, William D, 1977. "Economic Growth and Climate: The Carbon Dioxide Problem," American Economic Review, American Economic Association, vol. 67(1), pages 341-346, February.
    6. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    7. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    8. Samuel Randalls, 2010. "History of the 2°C climate target," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 1(4), pages 598-605, July.
    9. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Hao & Sun, Ke-Juan & Bi, Hui-Min & Xue, Jin-Jun, 2019. "Changes in carbon intensity globally and in countries: Attribution and decomposition analysis," Applied Energy, Elsevier, vol. 235(C), pages 1492-1504.
    2. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    3. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    4. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    5. Cai, Yongxia & Woollacott, Jared & Beach, Robert H. & Rafelski, Lauren E. & Ramig, Christopher & Shelby, Michael, 2023. "Insights from adding transportation sector detail into an economy-wide model: The case of the ADAGE CGE model," Energy Economics, Elsevier, vol. 123(C).
    6. Liu, Bingquan & Shi, Junxue & Wang, Hui & Su, Xuelin & Zhou, Peng, 2019. "Driving factors of carbon emissions in China: A joint decomposition approach based on meta-frontier," Applied Energy, Elsevier, vol. 256(C).
    7. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    8. Aryanpur, V. & Ghahremani, M. & Mamipour, S. & Fattahi, M. & Ó Gallachóir, B. & Bazilian, M.D. & Glynn, J., 2022. "Ex-post analysis of energy subsidy removal through integrated energy systems modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    10. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    11. Li, Aijun & Zhou, Dinglin & Chen, Guoshi & Liu, Yuhao & Long, Yan, 2020. "Multi-region comparisons of energy-related CO2 emissions and production water use during energy development in northwestern China," Renewable Energy, Elsevier, vol. 153(C), pages 940-961.
    12. Qodri Febrilian Erahman & Nadhilah Reyseliani & Widodo Wahyu Purwanto & Mahmud Sudibandriyo, 2019. "Modeling Future Energy Demand and CO 2 Emissions of Passenger Cars in Indonesia at the Provincial Level," Energies, MDPI, vol. 12(16), pages 1-25, August.
    13. Bastian, Anne & Börjesson, Maria, 2014. "It's the economy, stupid: increasing fuel price is enough to explain Peak Car in Sweden," Working papers in Transport Economics 2014:15, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    14. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    15. Wang, Rui & Yuan, Quan, 2013. "Parking practices and policies under rapid motorization: The case of China," Transport Policy, Elsevier, vol. 30(C), pages 109-116.
    16. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    17. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    18. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    19. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    20. Joseph E. Aldy & Robert N. Stavins, 2021. "Rolling The Dice In The Corridors Of Power: William Nordhaus’S Impacts On Climate Change Policy," World Scientific Book Chapters, in: Robert Mendelsohn (ed.), CLIMATE CHANGE ECONOMICS Commemoration of Nobel Prize for William Nordhaus, chapter 1, pages 1-18, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:149:y:2021:i:c:s0301421520306534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.