IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v115y2022ics0140988322004868.html
   My bibliography  Save this article

Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017

Author

Listed:
  • Yan, Junna
  • Li, Yingzhu
  • Su, Bin
  • Ng, Tsan Sheng

Abstract

China has been experiencing significant energy use transition accompanied by emphasizing on dual control of energy (e.g. energy consumption and energy intensity). Energy use was expected to present obvious spatial characteristics and differentiated contributions across regions. A systematic energy analysis was carried out to 31 regions (including Tibet) in China for investigating the contributors to national achievements and key drivers of regional energy use. With the help of multi-region input-output model (MRIO) and structural decomposition analysis (SDA) techniques, we found that the aggregate energy use in China has been advanced effectively with a declined increasing total energy consumption and accelerated decreasing total aggregate energy intensity. From regional perspective, Eastern region contributed the most characterized by greater total embodied energy consumption and lower aggregate embodied energy intensity, such as Shandong, Hebei and Jiangsu. From demand perspective, regional energy use has been dramatically determined by investment, consumption and exports in sequence. The changes in regional energy use have been tremendously influenced by the sectoral energy intensity and domestic production structure with differentiated performance across regions. According to additive and multiplicative SDA results, two different regional energy conservation paths, i.e. efficiency- and structure-oriented improvements, were identified for China.

Suggested Citation

  • Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004868
    DOI: 10.1016/j.eneco.2022.106357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    4. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    5. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    6. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    7. Tang, Zhipeng & Yu, Haojie & Zou, Jialing, 2022. "How does production substitution affect China's embodied carbon emissions in exports?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
    9. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    10. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    11. Hao, Yu & Peng, Hui, 2017. "On the convergence in China's provincial per capita energy consumption: New evidence from a spatial econometric analysis," Energy Economics, Elsevier, vol. 68(C), pages 31-43.
    12. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    13. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    14. Chong, ChinHao & Liu, Pei & Ma, Linwei & Li, Zheng & Ni, Weidou & Li, Xu & Song, Shizhong, 2017. "LMDI decomposition of energy consumption in Guangdong Province, China, based on an energy allocation diagram," Energy, Elsevier, vol. 133(C), pages 525-544.
    15. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    16. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    17. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    18. Meng, Guanfei & Liu, Hongxun & Li, Jianglong & Sun, Chuanwang, 2022. "Determination of driving forces for China's energy consumption and regional disparities using a hybrid structural decomposition analysis," Energy, Elsevier, vol. 239(PC).
    19. Ma, Ben, 2015. "Does urbanization affect energy intensities across provinces in China?Long-run elasticities estimation using dynamic panels with heterogeneous slopes," Energy Economics, Elsevier, vol. 49(C), pages 390-401.
    20. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    21. Shi, Xiaohui & Chu, Junhui & Zhao, Changyi, 2021. "Exploring the spatiotemporal evolution of energy intensity in China by visual technology of the GIS," Energy, Elsevier, vol. 228(C).
    22. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    23. Amin, Sakib & Jamasb, Tooraj & Nepal, Rabindra, 2021. "Regulatory reform and the relative efficacy of government versus private investment on energy consumption in South Asia," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 421-433.
    24. Luo, Yulong & Zeng, Weiliang & Wang, Yueqiang & Li, Danzhou & Hu, Xianbiao & Zhang, Hua, 2021. "A hybrid approach for examining the drivers of energy consumption in Shanghai," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    25. Li, Aijun & Hu, Mingming & Wang, Mingjian & Cao, Yinxue, 2016. "Energy consumption and CO2 emissions in Eastern and Central China: A temporal and a cross-regional decomposition analysis," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 284-297.
    26. Wu, Ya & Zhang, Wanying, 2016. "The driving factors behind coal demand in China from 1997 to 2012: An empirical study of input-output structural decomposition analysis," Energy Policy, Elsevier, vol. 95(C), pages 126-134.
    27. Gao, Cuixia & Su, Bin & Sun, Mei & Zhang, Xiaoling & Zhang, Zhonghua, 2018. "Interprovincial transfer of embodied primary energy in China: A complex network approach," Applied Energy, Elsevier, vol. 215(C), pages 792-807.
    28. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    29. Lei, Ming & Yin, Zihan & Yu, Xiaowen & Deng, Shijie, 2017. "Carbon-weighted economic development performance and driving force analysis: Evidence from China," Energy Policy, Elsevier, vol. 111(C), pages 179-192.
    30. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    31. Yang, Mian & Hong, Yili & Yang, Fuxia, 2022. "The effects of Mandatory Energy Efficiency Policy on resource allocation efficiency: Evidence from Chinese industrial sector," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 513-524.
    32. Huang, He & Hong, Jingke & Wang, Xianzhu & Chang-Richards, Alice & Zhang, Jingxiao & Qiao, Bei, 2022. "A spatiotemporal analysis of the driving forces behind the energy interactions of the Chinese economy: Evidence from static and dynamic perspectives," Energy, Elsevier, vol. 239(PB).
    33. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    34. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    35. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    36. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    37. Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
    38. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    39. Wang, S.S. & Zhou, D.Q. & Zhou, P. & Wang, Q.W., 2011. "CO2 emissions, energy consumption and economic growth in China: A panel data analysis," Energy Policy, Elsevier, vol. 39(9), pages 4870-4875, September.
    40. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    41. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    42. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    43. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    44. Yu, Xiaoman & Geng, Yong & Dong, Huijuan & Ulgiati, Sergio & Liu, Zhe & Liu, Zuoxi & Ma, Zhixiao & Tian, Xu & Sun, Lu, 2016. "Sustainability assessment of one industrial region: A combined method of emergy analysis and IPAT (Human Impact Population Affluence Technology)," Energy, Elsevier, vol. 107(C), pages 818-830.
    45. Zhang, Haiyan & Lahr, Michael L., 2014. "China's energy consumption change from 1987 to 2007: A multi-regional structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 682-693.
    46. Zhang, Ming & Su, Bin, 2016. "Assessing China's rural household energy sustainable development using improved grouped principal component method," Energy, Elsevier, vol. 113(C), pages 509-514.
    47. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Jie & Gao, Junhong, 2023. "Natural resource curse hypothesis and governance: Understanding the role of rule of law and political risk in the context of China," Resources Policy, Elsevier, vol. 85(PB).
    2. Xu, Chengzhen & Zhu, Qingyuan & Li, Xingchen & Wu, Liangpeng & Deng, Ping, 2024. "Determinants of global carbon emission and aggregate carbon intensity: A multi-region input−output approach," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 418-435.
    3. Long, Dengjie & Du, Junhua & Xin, Yongrong, 2023. "Assessing the nexus between natural resource consumption and urban sprawl: Empirical evidence from 288 cities in China," Resources Policy, Elsevier, vol. 85(PB).
    4. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    5. Ye, Tuo & Zhao, Songyu & Lau, Chi Keung Marco & Chau, Frankie, 2024. "Social media sentiment of hydrogen fuel cell vehicles in China: Evidence from artificial intelligence algorithms," Energy Economics, Elsevier, vol. 133(C).
    6. Sun, Chen & Song, Junnian & Zhang, Dongqi & Wang, Xiaofan & Yang, Wei & Qi, Zhimin & Chen, Shaoqing, 2023. "Tracing urban carbon footprints differentiating supply chain complexity: A metropolis case," Energy, Elsevier, vol. 282(C).
    7. Sun, Chuanwang & Xu, Zhehong & Zheng, Hongwei, 2023. "Green transformation of the building industry and the government policy effects: Policy simulation based on the DSGE model," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaomei & Su, Bin & Yang, Jun & Cong, Jianhui, 2022. "Analysis of Shanxi Province's energy consumption and intensity using input-output framework (2002–2017)," Energy, Elsevier, vol. 250(C).
    2. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    3. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    4. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.
    5. Su, Bin & Ang, B.W. & Li, Yingzhu, 2019. "Structural path and decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 83(C), pages 345-360.
    6. Sun, Ya-Fang & Yu, Shiwei & Zhang, Yue-Jun & Su, Bin, 2023. "How do imports change the energy consumption of China? An analysis of its role in intermediate inputs and final demands," Energy, Elsevier, vol. 270(C).
    7. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    8. Su, Bin & Ang, B.W., 2022. "Improved granularity in input-output analysis of embodied energy and emissions: The use of monthly data," Energy Economics, Elsevier, vol. 113(C).
    9. Yan, Junna & Su, Bin, 2020. "Spatial differences in energy performance among four municipalities of China: From both the aggregate and final demand perspectives," Energy, Elsevier, vol. 204(C).
    10. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    11. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    12. Su, Bin & Goh, Tian & Ang, B.W. & Ng, Tsan Sheng, 2022. "Energy consumption and energy efficiency trends in Singapore: The case of a meticulously planned city," Energy Policy, Elsevier, vol. 161(C).
    13. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    14. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    15. Su, Bin & Ang, B.W. & Sun, Ya-Fang, 2022. "Input-output analysis of embodied emissions: Impacts of imports data treatment on emission drivers," Energy Economics, Elsevier, vol. 107(C).
    16. Duan, Yuwan & Yan, Bingqian, 2019. "Economic gains and environmental losses from international trade: A decomposition of pollution intensity in China's value-added trade," Energy Economics, Elsevier, vol. 83(C), pages 540-554.
    17. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    18. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    19. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    20. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s0140988322004868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.