IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/94797.html
   My bibliography  Save this paper

Energy Efficiency Transitions in China: How persistent are the movements to/from the frontier?

Author

Listed:
  • Zhang, Lin
  • Adom, Philip Kofi

Abstract

This study examines the energy efficiency transitions in China using provincial data covering the period 2003–2015. Sustainable progress in energy efficiency achievements is beneficial to energy insecurity and the achievement of the Paris Agreement. This article combines the stochastic frontier method with the panel Markov-switching regression to model energy efficiency transitions. Estimated energy efficiency scores showed significant regional and provincial heterogeneity. Also, while human capital development, urbanization, and foreign direct investment promote energy efficiency, price and income per capita reduce it. The transition probabilities indicate that the high energy-efficient state is less sustainable, and the movement towards the frontier seems less persistent than movement from the frontier. Thus, it appears that China is not making sustainable progress in energy efficiency. The unsustainable nature of the high energy-efficient state suggests that in China, there are weak energy efficiency efforts and energy efficiency policies lack robustness.

Suggested Citation

  • Zhang, Lin & Adom, Philip Kofi, 2018. "Energy Efficiency Transitions in China: How persistent are the movements to/from the frontier?," MPRA Paper 94797, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:94797
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/94797/1/MPRA_paper_94797.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/94797/2/MPRA_paper_94797.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    3. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    4. He, Yong & Liao, Nuo & Zhou, Ya, 2018. "Analysis on provincial industrial energy efficiency and its influencing factors in China based on DEA-RS-FANN," Energy, Elsevier, vol. 142(C), pages 79-89.
    5. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    6. Xiaobo Shen & Boqiang Lin, 2017. "Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis," Sustainability, MDPI, vol. 9(4), pages 1-17, April.
    7. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    8. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    9. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    10. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    11. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    12. Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
    13. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    14. Adom, Philip Kofi, 2016. "The transition between energy efficient and energy inefficient states in Cameroon," Energy Economics, Elsevier, vol. 54(C), pages 248-262.
    15. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    16. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    17. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    18. Dayong Zhang & David C. Broadstock, 2016. "Club Convergence in the Energy Intensity of China," The Energy Journal, , vol. 37(3), pages 137-158, July.
    19. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    20. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    21. Wang, H. & Ang, B.W. & Wang, Q.W. & Zhou, P., 2017. "Measuring energy performance with sectoral heterogeneity: A non-parametric frontier approach," Energy Economics, Elsevier, vol. 62(C), pages 70-78.
    22. Lin, Boqiang & Wang, Xiaolei, 2014. "Exploring energy efficiency in China׳s iron and steel industry: A stochastic frontier approach," Energy Policy, Elsevier, vol. 72(C), pages 87-96.
    23. Lin, Boqiang & Du, Kerui, 2014. "Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy," Energy, Elsevier, vol. 76(C), pages 884-890.
    24. Zhang, Lin, 2017. "Correcting the uneven burden sharing of emission reduction across provinces in China," Energy Economics, Elsevier, vol. 64(C), pages 335-345.
    25. Efthymios G. Tsionas & Subal C. Kumbhakar, 2014. "FIRM HETEROGENEITY, PERSISTENT AND TRANSIENT TECHNICAL INEFFICIENCY: A GENERALIZED TRUE RANDOM‐EFFECTS model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 110-132, January.
    26. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    27. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    28. Zhang, Jiangshan & Lin Lawell, C.-Y. Cynthia, 2017. "The macroeconomic rebound effect in China," Energy Economics, Elsevier, vol. 67(C), pages 202-212.
    29. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    30. Deliang Pang & Hongwei Su, 2017. "Determinants of energy intensity in Chinese provinces," Energy & Environment, , vol. 28(4), pages 451-467, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tripathy, Prajukta & Jena, Pabitra Kumar & Mishra, Bikash Ranjan, 2024. "Systematic literature review and bibliometric analysis of energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    2. Ge, Yihan & Yuan, Rong, 2024. "Exploring decoupling relationship between ICT investments and energy consumption in China's provinces: Factors and policy implications," Energy, Elsevier, vol. 286(C).
    3. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2023. "Foreign direct investment and inclusive green growth in Africa: Energy efficiency contingencies and thresholds," Energy Economics, Elsevier, vol. 117(C).
    4. Isaac K. Ofori & Emmanuel Y. Gbolonyo & Nathanael Ojong, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," Working Papers 22/089, European Xtramile Centre of African Studies (EXCAS).
    5. Sheng, Weili & Zhang, Lin & Ridley, Ian, 2020. "The impact of minimum OTTV legislation on building energy consumption," Energy Policy, Elsevier, vol. 136(C).
    6. Hu, Bin & Li, Zhengtao & Zhang, Lin, 2019. "Long-run dynamics of sulphur dioxide emissions, economic growth and energy efficiency in China," MPRA Paper 94588, University Library of Munich, Germany.
    7. Zhang, Mingyang & Zhang, Kaiwen & Hu, Wuyang & Zhu, Bangzhu & Wang, Ping & Wei, Yi-Ming, 2020. "Exploring the climatic impacts on residential electricity consumption in Jiangsu, China," Energy Policy, Elsevier, vol. 140(C).
    8. Liu, Fengqin & Sim, Jae-yeon & Sun, Huaping & Edziah, Bless Kofi & Adom, Philip Kofi & Song, Shunfeng, 2023. "Assessing the role of economic globalization on energy efficiency: Evidence from a global perspective," China Economic Review, Elsevier, vol. 77(C).
    9. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
    10. Tajudeen, Ibrahim A., 2021. "The underlying drivers of economy-wide energy efficiency and asymmetric energy price responses," Energy Economics, Elsevier, vol. 98(C).
    11. Isaac K. Ofori & Emmanuel Y. Gbolonyo & Nathanael Ojong, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," Working Papers of the African Governance and Development Institute. 22/089, African Governance and Development Institute..
    12. John A. Jinapor & Shafic Suleman & Richard Stephens Cromwell, 2023. "Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference?," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    13. Eirini Stergiou & Kostas Kounetas, 2021. "European Industries’ Energy Efficiency under Different Technological Regimes: The Role of CO2 Emissions, Climate, Path Dependence and Energy Mix," The Energy Journal, , vol. 42(1), pages 93-128, January.
    14. Hongyan Zhang & Lin Zhang & Ning Zhang, 2024. "When and Under What Conditions Does an Emission Trading Scheme Become Cost Effective?," The Energy Journal, , vol. 45(2), pages 261-294, March.
    15. Amuakwa-Mensah, Franklin & Klege, Rebecca A. & Adom, Philip K. & Amoah, Anthony & Hagan, Edmond, 2018. "Unveiling the energy saving role of banking performance in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 74(C), pages 828-842.
    16. Adom, Philip Kofi & Amuakwa-Mensah, Franklin & Akorli, Charity Dzifa, 2023. "Energy efficiency as a sustainability concern in Africa and financial development: How much bias is involved?," Energy Economics, Elsevier, vol. 120(C).
    17. Ofori, Isaac K & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 1-58.
    18. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).
    19. Philip Kofi Adom & Joonho Yeo & Lin Zhang, 2021. "Is water use sustainable and efficient in China? Evidence from a macro level analysis," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6166-6183, November.
    20. Philip Kofi Adom, 2021. "Financial depth and electricity consumption in Africa: Does education matter?," Empirical Economics, Springer, vol. 61(4), pages 1985-2039, October.
    21. Ofori, Isaac K. & Gbolonyo, Emmanuel Y. & Ojong, Nathanael, 2022. "Foreign Direct Investment and Inclusive Green Growth in Africa: Energy Efficiency Contingencies and Thresholds," MPRA Paper 115379, University Library of Munich, Germany, revised 09 Nov 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2020. "Effects of urbanization on energy efficiency in China: New evidence from short run and long run efficiency models," Energy Policy, Elsevier, vol. 147(C).
    2. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    3. Philip Kofi Adom & Joonho Yeo & Lin Zhang, 2021. "Is water use sustainable and efficient in China? Evidence from a macro level analysis," Applied Economics, Taylor & Francis Journals, vol. 53(53), pages 6166-6183, November.
    4. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    5. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).
    6. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    7. Huaping Sun & Bless Kofi Edziah & Xiaoqian Song & Anthony Kwaku Kporsu & Farhad Taghizadeh-Hesary, 2020. "Estimating Persistent and Transient Energy Efficiency in Belt and Road Countries: A Stochastic Frontier Analysis," Energies, MDPI, vol. 13(15), pages 1-19, July.
    8. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    9. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    10. Lester C. Hunt & Paraskevas Kipouros, 2023. "Energy Demand and Energy Efficiency in Developing Countries," Energies, MDPI, vol. 16(3), pages 1-26, January.
    11. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    12. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    13. Émilie Caldeira & Ali Compaore & Alou Adessé Dama & Mario Mansour & Grégoire Rota-Graziosi, 2019. "Effort fiscal en Afrique subsaharienne : les résultats d’une nouvelle base de données," Revue d’économie du développement, De Boeck Université, vol. 27(4), pages 5-51.
    14. Valentin Zelenyuk & Zhichao Wang, 2023. "Random vs. Explained Inefficiency in Stochastic Frontier Analysis: The Case of Queensland Hospitals," CEPA Working Papers Series WP052023, School of Economics, University of Queensland, Australia.
    15. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    16. Daniel Albalate & Jordi Rosell, 2016. "Persistent and transient efficiency on the stochastic production and cost frontiers – an application to the motorway sector," Working Papers XREAP2016-04, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2016.
    17. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    18. Badunenko, Oleg & Kumbhakar, Subal C., 2016. "When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models," European Journal of Operational Research, Elsevier, vol. 255(1), pages 272-287.
    19. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    20. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    More about this item

    Keywords

    Energy efficiency transitions; Panel Markov; Stochastic frontier; China;
    All these keywords.

    JEL classification:

    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:94797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.