IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp1510-1517.html
   My bibliography  Save this article

The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach

Author

Listed:
  • Yue, Ting
  • Long, Ruyin
  • Chen, Hong
  • Zhao, Xin

Abstract

This study aimed to determine the optimal CO2 reduction path for Jiangsu province to achieve the target of 40–45% reduction of CO2 emissions intensity by 2020 based on the 2005 level. Using the IPAT model combined with scenario analysis, we consider four parameters: economic growth, population growth, energy intensity and renewable-energy share. Each parameter is measured from different scenarios, and 54 kinds of scheme are set to forecast the CO2 emissions. The forecast results show that it is likely for Jiangsu province to achieve the target. Rapid economic growth is the main determinant that causes increase in CO2 emissions. Energy-intensity reduction and renewable-energy-share increase have beneficial influences on reducing CO2 emissions. The effect of energy-share increase is larger than that of energy-intensity reduction. As for the reduction of CO2 emissions intensity, energy-intensity reduction has a larger influence than renewable-energy-share increase. The optimal development mode until the year 2020 is as follows: the economy and population grow at appropriate rates, energy intensity reaches the level in developed countries, and the renewable-energy share increases to 15% in 2020.

Suggested Citation

  • Yue, Ting & Long, Ruyin & Chen, Hong & Zhao, Xin, 2013. "The optimal CO2 emissions reduction path in Jiangsu province: An expanded IPAT approach," Applied Energy, Elsevier, vol. 112(C), pages 1510-1517.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1510-1517
    DOI: 10.1016/j.apenergy.2013.02.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Purkus, Alexandra & Barth, Volker, 2011. "Geothermal power production in future electricity markets--A scenario analysis for Germany," Energy Policy, Elsevier, vol. 39(1), pages 349-357, January.
    2. Chang, Ching-Chih, 2010. "A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China," Applied Energy, Elsevier, vol. 87(11), pages 3533-3537, November.
    3. Ou, Xunmin & Yan, Xiaoyu & Zhang, Xiliang & Liu, Zhen, 2012. "Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China," Applied Energy, Elsevier, vol. 90(1), pages 218-224.
    4. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    5. Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
    6. Yamamoto, Hiromi & Yamaji, Kenji & Fujino, Junichi, 2000. "Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model," Applied Energy, Elsevier, vol. 66(4), pages 325-337, August.
    7. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    8. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    9. Song, Feng & Zheng, Xinye, 2012. "What drives the change in China's energy intensity: Combining decomposition analysis and econometric analysis at the provincial level," Energy Policy, Elsevier, vol. 51(C), pages 445-453.
    10. Fei, Li & Dong, Suocheng & Xue, Li & Liang, Quanxi & Yang, Wangzhou, 2011. "Energy consumption-economic growth relationship and carbon dioxide emissions in China," Energy Policy, Elsevier, vol. 39(2), pages 568-574, February.
    11. Duić, Neven & Guzović, Zvonimir & Kafarov, Vyatcheslav & Klemeš, Jiří Jaromír & Mathiessen, Brian vad & Yan, Jinyue, 2013. "Sustainable development of energy, water and environment systems," Applied Energy, Elsevier, vol. 101(C), pages 3-5.
    12. Hayashi, Ayami & Tokimatsu, Koji & Yamamoto, Hiromi & Mori, Shunsuke, 2006. "Narrative scenario development based on cross-impact analysis for the evaluation of global-warming mitigation options," Applied Energy, Elsevier, vol. 83(10), pages 1062-1075, October.
    13. Criqui, Patrick & Mima, Silvana, 2012. "European climate—energy security nexus: A model based scenario analysis," Energy Policy, Elsevier, vol. 41(C), pages 827-842.
    14. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    15. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    16. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    17. Simões, Sofia & Cleto, João & Fortes, Patri­cia & Seixas, Júlia & Huppes, Gjalt, 2008. "Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020," Energy Policy, Elsevier, vol. 36(9), pages 3598-3611, September.
    18. Li, Li & Chen, Changhong & Xie, Shichen & Huang, Cheng & Cheng, Zhen & Wang, Hongli & Wang, Yangjun & Huang, Haiying & Lu, Jun & Dhakal, Shobhakar, 2010. "Energy demand and carbon emissions under different development scenarios for Shanghai, China," Energy Policy, Elsevier, vol. 38(9), pages 4797-4807, September.
    19. Song, Malin & Wang, Shuhong & Yu, Huayin & Yang, Li & Wu, Jie, 2011. "To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5129-5134.
    20. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    21. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    22. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    23. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    24. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    25. Knapp, Tom & Mookerjee, Rajen, 1996. "Population growth and global CO2 emissions : A secular perspective," Energy Policy, Elsevier, vol. 24(1), pages 31-37, January.
    26. Patrick Criqui & Silvana Mima, 2012. "European climate -- energy security nexus: A model based scenario analysis," Post-Print halshs-00661043, HAL.
    27. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    28. Wang, Tao & Watson, Jim, 2010. "Scenario analysis of China's emissions pathways in the 21st century for low carbon transition," Energy Policy, Elsevier, vol. 38(7), pages 3537-3546, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    2. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    3. Tan, Xiujie & Liu, Yu & Cui, Jingbo & Su, Bin, 2018. "Assessment of carbon leakage by channels: An approach combining CGE model and decomposition analysis," Energy Economics, Elsevier, vol. 74(C), pages 535-545.
    4. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    5. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    6. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    7. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    8. Tao Lin & Junna Yan, 2017. "Investigating the sensitivity factors of household indirect CO2 emission from the production side," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 721-740, September.
    9. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    10. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    11. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    12. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    13. Huang, Junbing & Du, Dan & Hao, Yu, 2017. "The driving forces of the change in China's energy intensity: An empirical research using DEA-Malmquist and spatial panel estimations," Economic Modelling, Elsevier, vol. 65(C), pages 41-50.
    14. Ouyang, Xiaoling & Lin, Boqiang, 2015. "An analysis of the driving forces of energy-related carbon dioxide emissions in China’s industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 838-849.
    15. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    16. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    17. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    18. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    19. Xie, Rui & Fang, Jiayu & Liu, Cenjie, 2017. "The effects of transportation infrastructure on urban carbon emissions," Applied Energy, Elsevier, vol. 196(C), pages 199-207.
    20. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, vol. 4(12), pages 1-24, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:1510-1517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.