IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13571-d948275.html
   My bibliography  Save this article

Does Innovative Industrial Agglomeration Promote Environmentally-Friendly Development? Evidence from Chinese Prefecture-Level Cities

Author

Listed:
  • Chuang Li

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China
    These authors contributed equally to this work.)

  • Qingqing Liu

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China
    These authors contributed equally to this work.)

  • Qing Li

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China)

  • Hailing Wang

    (School of Economics and Management, Xinjiang University, Urumqi 830046, China)

Abstract

China has promised to meet the “carbon peaking and carbon neutrality” goals. Exploring the relationship between innovative industrial agglomeration and environmental pollution plays an important role in the realization of these goals and sustainable development. Based on the panel data of 277 prefecture-level cities in China from 2007 to 2019, this paper uses the multi-period difference-in-difference (DID) model to examine the impact and mechanism of the innovative industrial agglomeration pilot (IIAP) policy on the environment. Furthermore, we explore the spatial effect of the IIAP using spatial DID. The findings show that, firstly, the IIAP policy significantly contributes to environmentally-friendly development in terms of enhancing carbon emission efficiency ( CEE ) and reducing environmental pollution index ( EPI ). Secondly, the IIAP policy promotes environmentally-friendly development mainly by improving the technological innovation level. Additionally, the heterogeneity analysis shows that the environmentally-friendly effect of the IIAP policy is primarily in the eastern region, large cities, and non-resource-based cities. Finally, there is a significant spatial effect of the IIAP policy on environmentally-friendly development, mainly reflected in the weak siphon effect between treatment group cities and neighboring regions. We suggest that the government should continue to maintain the steady growth of the IIAP cities and improve the energy utilization efficiency through a policy of green technology innovation. The government should also optimize the spatial layout of the pilot cities and make full use of the energy advantages of each region to better promote environmentally-friendly development.

Suggested Citation

  • Chuang Li & Qingqing Liu & Qing Li & Hailing Wang, 2022. "Does Innovative Industrial Agglomeration Promote Environmentally-Friendly Development? Evidence from Chinese Prefecture-Level Cities," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13571-:d:948275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, James B., 2007. "CO2 emissions, energy consumption, and output in France," Energy Policy, Elsevier, vol. 35(10), pages 4772-4778, October.
    2. Shin, Duckjung & Woodwark, Meredith J. & Konrad, Alison M. & Jung, Yongsuhk, 2022. "Innovation strategy, voice practices, employee voice participation, and organizational innovation," Journal of Business Research, Elsevier, vol. 147(C), pages 392-402.
    3. Gu, Qiwei & Wang, Hongqi & Zheng, Yinan & Zhu, Jingwen & Li, Xiaoke, 2015. "Ecological footprint analysis for urban agglomeration sustainability in the middle stream of the Yangtze River," Ecological Modelling, Elsevier, vol. 318(C), pages 86-99.
    4. Dong, Kangyin & Ren, Xiaohang & Zhao, Jun, 2021. "How does low-carbon energy transition alleviate energy poverty in China? A nonparametric panel causality analysis," Energy Economics, Elsevier, vol. 103(C).
    5. Mercedes Gumbau-Albert & Joaquin Maudos, 2009. "Patents, technological inputs and spillovers among regions," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1473-1486.
    6. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    7. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    8. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    9. Ya Wen & Meng Liao, 2019. "The Impact of Industrial Agglomeration on Carbon Emissions: Empirical Evidence from China," International Journal of Management and Sustainability, Conscientia Beam, vol. 8(2), pages 67-78.
    10. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    11. Chagas, André L.S. & Azzoni, Carlos R. & Almeida, Alexandre N., 2016. "A spatial difference-in-differences analysis of the impact of sugarcane production on respiratory diseases," Regional Science and Urban Economics, Elsevier, vol. 59(C), pages 24-36.
    12. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    13. Ye, Jiangfeng & Wan, Qunchao & Li, Ruida & Yao, Zhu & Huang, Dujuan, 2022. "How do R&D agglomeration and economic policy uncertainty affect the innovative performance of Chinese high-tech industry?," Technology in Society, Elsevier, vol. 69(C).
    14. Shanzi Ke & Edward Feser, 2010. "Count on the Growth Pole Strategy for Regional Economic Growth? Spread-Backwash Effects in Greater Central China," Regional Studies, Taylor & Francis Journals, vol. 44(9), pages 1131-1147.
    15. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    16. Speldekamp, Daniël & Knoben, Joris & Saka-Helmhout, Ayse, 2020. "Clusters and firm-level innovation: A configurational analysis of agglomeration, network and institutional advantages in European aerospace," Research Policy, Elsevier, vol. 49(3).
    17. Ya Wen & Meng Liao, 2019. "The Impact of Industrial Agglomeration on Carbon Emissions: Empirical Evidence from China," International Journal of Management and Sustainability, Conscientia Beam, vol. 8(2), pages 67-78.
    18. Habiba, Umme & Xinbang, Cao & Anwar, Ahsan, 2022. "Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions?," Renewable Energy, Elsevier, vol. 193(C), pages 1082-1093.
    19. Yu, Yantuan & Chen, Xudong & Zhang, Ning, 2022. "Innovation and energy productivity: An empirical study of the innovative city pilot policy in China✰," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    20. Yuan, Huaxi & Feng, Yidai & Lee, Chien-Chiang & Cen, Yan, 2020. "How does manufacturing agglomeration affect green economic efficiency?," Energy Economics, Elsevier, vol. 92(C).
    21. Yang, Qiuyue & Gao, Da & Song, Deyong & Li, Yi, 2021. "Environmental regulation, pollution reduction and green innovation: The case of the Chinese Water Ecological Civilization City Pilot policy," Economic Systems, Elsevier, vol. 45(4).
    22. Tang, Pengcheng & Yang, Shuwang & Shen, Jun & Fu, Shuke, 2018. "Does China's low-carbon pilot programme really take off? Evidence from land transfer of energy-intensive industry," Energy Policy, Elsevier, vol. 114(C), pages 482-491.
    23. Liu, Zheming & Zeng, Saixing & Jin, Zhizhou & Shi, Jonathan Jingsheng, 2022. "Transport infrastructure and industrial agglomeration: Evidence from manufacturing industries in China," Transport Policy, Elsevier, vol. 121(C), pages 100-112.
    24. Xie, Rui & Fu, Wei & Yao, Siling & Zhang, Qi, 2021. "Effects of financial agglomeration on green total factor productivity in Chinese cities: Insights from an empirical spatial Durbin model," Energy Economics, Elsevier, vol. 101(C).
    25. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    26. Zhu, Bangzhu & Zhang, Mengfan & Huang, Liqing & Wang, Ping & Su, Bin & Wei, Yi-Ming, 2020. "Exploring the effect of carbon trading mechanism on China's green development efficiency: A novel integrated approach," Energy Economics, Elsevier, vol. 85(C).
    27. Jinling Yan & Junfeng Zhao & Xiaodong Yang & Xufeng Su & Hailing Wang & Qiying Ran & Jianliang Shen, 2021. "Does Low-Carbon City Pilot Policy Alleviate Urban Haze Pollution? Empirical Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 18(21), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shilei Wang & Ying Ji & M. I. M. Wahab & Dan Xu & Changbao Zhou, 2022. "A New Decision Framework of Online Multi-Attribute Reverse Auctions for Green Supplier Selection under Mixed Uncertainty," Sustainability, MDPI, vol. 14(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
    2. Rui Ding & Fangcheng Sun, 2023. "Impact of River Chief System on Green Technology Innovation: Empirical Evidence from the Yangtze River Economic Belt," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    3. Yuxi Chen & Mengting Zhang & Chencheng Wang & Xin Lin & Zhijie Zhang, 2023. "High-Tech Industrial Agglomeration, Government Intervention and Regional Energy Efficiency: Based on the Perspective of the Spatial Spillover Effect and Panel Threshold Effect," Sustainability, MDPI, vol. 15(7), pages 1-29, April.
    4. Lisha Wang & Jian Wang & Xuepeng Qian, 2023. "Does the bullet train exacerbate urban shrinkage? Lessons from Japan," Papers in Regional Science, Wiley Blackwell, vol. 102(1), pages 187-212, February.
    5. Li, Changsheng & Qi, Yaping & Liu, Shaohui & Wang, Xu, 2022. "Do carbon ETS pilots improve cities' green total factor productivity? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 108(C).
    6. Laiqun Jin & Xiuyan Liu & Sam Hak Kan Tang, 2021. "High-Technology Zones, Misallocation of Resources among Cities and Aggregate Productivity: Evidence from China," Economics Discussion / Working Papers 21-11, The University of Western Australia, Department of Economics.
    7. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).
    8. Sun, Chuanwang & Zhan, Yanhong & Du, Gang, 2020. "Can value-added tax incentives of new energy industry increase firm's profitability? Evidence from financial data of China's listed companies," Energy Economics, Elsevier, vol. 86(C).
    9. Jingan Chen & Chengdong Yi & Yourong Wang & Tianyu Bi, 2022. "Do Honored Cities Achieve a Sustainable Development? A Quasi-Natural Experimental Study Based on “National Civilized City” Campaign in China," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    10. Zhice Cheng & Xinyuan Chen & Huwei Wen, 2022. "How Does Environmental Protection Tax Affect Corporate Environmental Investment? Evidence from Chinese Listed Enterprises," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    11. Gao, Kang & Yuan, Yijun, 2022. "Government intervention, spillover effect and urban innovation performance: Empirical evidence from national innovative city pilot policy in China," Technology in Society, Elsevier, vol. 70(C).
    12. Gathmann, Christina & Helm, Ines & Schönberg, Uta, 2014. "Spillover Effects in Local Labor Markets: Evidence from Mass Layoffs," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100378, Verein für Socialpolitik / German Economic Association.
    13. Zhang, Yali & Li, Wenqi & Wu, Feng, 2020. "Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project," Energy, Elsevier, vol. 206(C).
    14. Kristian Behrens & Manassé Drabo & Florian Mayneris, 2021. "Cultural and public services as factors of city resilience ? Evidence from big plant closures and downsizing," CIRANO Working Papers 2021s-41, CIRANO.
    15. Tang, Chang & Xu, Yuanyuan & Hao, Yu & Wu, Haitao & Xue, Yan, 2021. "What is the role of telecommunications infrastructure construction in green technology innovation? A firm-level analysis for China," Energy Economics, Elsevier, vol. 103(C).
    16. Fanchao Kong & Hongkai Zhang & Xiangyan Meng & Shuai Li & Jia Liu, 2022. "Can the Policy of National Urban Agglomeration Improve Economic and Environmental Gains? Evidence from Quasi-Natural Experiments with 280 Cities in China," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    17. Zhang, Xiaoqian & Yao, Shujie & Zheng, Weiwei & Fang, Jing, 2023. "On industrial agglomeration and industrial carbon productivity --- impact mechanism and nonlinear relationship," Energy, Elsevier, vol. 283(C).
    18. Guo, Qingbin & Zhong, Jinrong, 2022. "The effect of urban innovation performance of smart city construction policies: Evaluate by using a multiple period difference-in-differences model," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    19. Feng Ye & Zhongna Yang & Mark Yu & Susan Watson & Ashley Lovell, 2023. "Can Market-Oriented Reform of Agricultural Subsidies Promote the Growth of Agricultural Green Total Factor Productivity? Empirical Evidence from Maize in China," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    20. Wang, Xuliang & Xu, Lulu & Ye, Qin & He, Shi & Liu, Yi, 2022. "How does services agglomeration affect the energy efficiency of the service sector? Evidence from China," Energy Economics, Elsevier, vol. 112(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13571-:d:948275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.