IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v71y2021icp499-515.html
   My bibliography  Save this article

Climate policy choices: An empirical study of the effects on the OECD and BRICS power sector emission intensity

Author

Listed:
  • Sæther, Simen Rostad

Abstract

A crucial and challenging part of the worldwide energy transition from fossil fuels to renewable energy is the decarbonization of the power sector. As governments struggle to pass politically feasible, emission-reducing policies that align with other national and international goals, empirical studies can provide insights for policymakers on the question of whether various approaches to combating climate change have effectively contributed to reducing CO2 emissions. This paper investigates the effect of several key climate policies that governments have implemented in order to reduce CO2 emission intensity in the power sector; used in this analysis are newly constructed panel data on 34 OECD countries and the 5 BRICS countries that range from 2000 to 2018. The main findings of this paper suggest that, despite a strong theoretical foundation, the market-based policy tested in this analysis does not display a significant negative effect on CO2 emission intensity. Technological innovation support-policies and deployment-support policies such as feed-in tariffs for wind power production correlate negatively with CO2 emission intensity. Feed-in tariffs for solar PV and public environmental R&D expenditure do not indicate a significant effect on emission intensity.

Suggested Citation

  • Sæther, Simen Rostad, 2021. "Climate policy choices: An empirical study of the effects on the OECD and BRICS power sector emission intensity," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 499-515.
  • Handle: RePEc:eee:ecanpo:v:71:y:2021:i:c:p:499-515
    DOI: 10.1016/j.eap.2021.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592621000886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2021.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Laing & Misato Sato & Michael Grubb & Claudia Comberti, 2013. "Assessing the effectiveness of the EU Emissions Trading System," GRI Working Papers 106, Grantham Research Institute on Climate Change and the Environment.
    2. Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2016. "The Impact of the European Union Emissions Trading Scheme on Regulated Firms: What Is the Evidence after Ten Years?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 129-148.
    3. Michael Grubb & Paul Drummond & Alexandra Poncia & Will Mcdowall & David Popp & Sascha Samadi & Cristina Penasco & Kenneth Gillingham & Sjak Smulders & Matthieu Glachant & Gavin Hassall & Emi Mizuno &, 2021. "Induced innovation in energy technologies and systems: a review of evidence and potential implications for CO 2 mitigation," Post-Print hal-03189044, HAL.
    4. Choi, Yongrok & Liu, Yu & Lee, Hyoungseok, 2017. "The economy impacts of Korean ETS with an emphasis on sectoral coverage based on a CGE approach," Energy Policy, Elsevier, vol. 109(C), pages 835-844.
    5. Richard G. Newell, 2009. "Literature Review of Recent Trends and Future Prospects for Innovation in Climate Change Mitigation," OECD Environment Working Papers 9, OECD Publishing.
    6. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    7. A. Denny Ellerman & Claudio Marcantonini & Aleksandar Zaklan, 2016. "The European Union Emissions Trading System: Ten Years and Counting," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 89-107.
    8. Woo, C.K. & Chen, Y. & Zarnikau, J. & Olson, A. & Moore, J. & Ho, T., 2018. "Carbon trading’s impact on California’s real-time electricity market prices," Energy, Elsevier, vol. 159(C), pages 579-587.
    9. Nick Johnstone & Ivan Haščič & Julie Poirier & Marion Hemar & Christian Michel, 2012. "Environmental policy stringency and technological innovation: evidence from survey data and patent counts," Applied Economics, Taylor & Francis Journals, vol. 44(17), pages 2157-2170, June.
    10. Im Tobin & Wonhyuk Cho, 2010. "Performance Tools and Their Impact on Pollution Reduction: an Assessment of Environmental Taxation and R&D," International Review of Public Administration, Taylor & Francis Journals, vol. 15(3), pages 53-65, January.
    11. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    12. Zvi Griliches, 1998. "R&D and Productivity: The Econometric Evidence," NBER Books, National Bureau of Economic Research, Inc, number gril98-1, June.
    13. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    14. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    15. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    16. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    17. Baumol,William J. & Oates,Wallace E., 1988. "The Theory of Environmental Policy," Cambridge Books, Cambridge University Press, number 9780521322249, January.
    18. Marianna O'Gorman & Frank Jotzo, 2014. "Impact of the Carbon Price on Australia's Electricity Demand, Supply and Emissions," CCEP Working Papers 1411, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    19. Dechezleprêtre, Antoine & Nachtigall, Daniel & Venmans, Frank, 2023. "The joint impact of the European Union emissions trading system on carbon emissions and economic performance," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    20. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    21. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    22. Asane-Otoo, Emmanuel, 2016. "Competition policies and environmental quality: Empirical analysis of the electricity sector in OECD countries," Energy Policy, Elsevier, vol. 95(C), pages 212-223.
    23. Sanya Carley & Elizabeth Baldwin & Lauren M. MacLean & Jennifer N. Brass, 2017. "Global Expansion of Renewable Energy Generation: An Analysis of Policy Instruments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 397-440, October.
    24. Fell, Harrison & Maniloff, Peter, 2018. "Leakage in regional environmental policy: The case of the regional greenhouse gas initiative," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 1-23.
    25. Bel, Germà & Joseph, Stephan, 2015. "Emission abatement: Untangling the impacts of the EU ETS and the economic crisis," Energy Economics, Elsevier, vol. 49(C), pages 531-539.
    26. Dong, C.G., 2012. "Feed-in tariff vs. renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development," Energy Policy, Elsevier, vol. 42(C), pages 476-485.
    27. Wang, M. & Zhou, P., 2017. "Does emission permit allocation affect CO2 cost pass-through? A theoretical analysis," Energy Economics, Elsevier, vol. 66(C), pages 140-146.
    28. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
    29. Alagappan, L. & Orans, R. & Woo, C.K., 2011. "What drives renewable energy development?," Energy Policy, Elsevier, vol. 39(9), pages 5099-5104, September.
    30. Gao, Yuning & Li, Meng & Xue, Jinjun & Liu, Yu, 2020. "Evaluation of effectiveness of China's carbon emissions trading scheme in carbon mitigation," Energy Economics, Elsevier, vol. 90(C).
    31. Hahn, Robert W, 1989. "Economic Prescriptions for Environmental Problems: How the Patient Followed the Doctor's Orders," Journal of Economic Perspectives, American Economic Association, vol. 3(2), pages 95-114, Spring.
    32. Griliches, Zvi, 1998. "R&D and Productivity," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226308869, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    2. Marit Klemetsen & Knut Einar Rosendahl & Anja Lund Jakobsen, 2020. "The Impacts Of The Eu Ets On Norwegian Plants’ Environmental And Economic Performance," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 1-32, February.
    3. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
    4. Joltreau, Eugénie & Sommerfeld, Katrin, 2016. "Why does emissions trading under the EU ETS not affect firms' competitiveness? Empirical findings from the literature," ZEW Discussion Papers 16-062, ZEW - Leibniz Centre for European Economic Research.
    5. Choi, Hyundo & Anadón, Laura Díaz, 2014. "The role of the complementary sector and its relationship with network formation and government policies in emerging sectors: The case of solar photovoltaics between 2001 and 2009," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 80-94.
    6. Marques, António Cardoso & Fuinhas, José Alberto & Pereira, Diogo Santos, 2019. "The dynamics of the short and long-run effects of public policies supporting renewable energy: A comparative study of installed capacity and electricity generation," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 188-206.
    7. Claudia Ghisetti & Francesco Quatraro, 2014. "Is green knowledge improving environmental productivity? Sectoral Evidence from Italian Regions," SEEDS Working Papers 1014, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    8. Flori, Andrea & Borghesi, Simone & Marin, Giovanni, 2024. "The environmental-financial performance nexus of EU ETS firms: A quantile regression approach," Energy Economics, Elsevier, vol. 131(C).
    9. Ghisetti,Claudia & Marzucchi,Alberto & Montresor,Sandro, 2013. "Does external knowledge affect environmental innovations? An empirical investigation of eleven European countries," INGENIO (CSIC-UPV) Working Paper Series 201301, INGENIO (CSIC-UPV), revised 23 May 2013.
    10. Jung‐Ah Hwang & Yeonbae Kim, 2017. "Effects of Environmental Regulations on Trade Flow in Manufacturing Sectors: Comparison of Static and Dynamic Effects of Environmental Regulations," Business Strategy and the Environment, Wiley Blackwell, vol. 26(5), pages 688-706, July.
    11. Esfandiar Maasoumi & Almas Heshmati & Inhee Lee, 2021. "RETRACTED ARTICLE: Green innovations and patenting renewable energy technologies," Empirical Economics, Springer, vol. 60(1), pages 513-538, January.
    12. Chiara Franco & Giovanni Marin, 2017. "The Effect of Within-Sector, Upstream and Downstream Environmental Taxes on Innovation and Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 261-291, February.
    13. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Ayhan, Fatih & Elal, Onuray, 2023. "The IMPACTS of technological change on employment: Evidence from OECD countries with panel data analysis," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    15. Jonathan Colmer & Ralf Martin & Mirabelle Muûls & Ulrich J. Wagner, 2020. "Does pricing carbon mitigate climate change? Firm-level evidence from the European Union emissions trading scheme," CEP Discussion Papers dp1728, Centre for Economic Performance, LSE.
    16. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    17. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    18. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    19. Dechezleprêtre, Antoine & Kozluk, Tomasz & Kruse, Tobias & Nachtigall, Daniel & de Serres, Alain, 2019. "Do Environmental and Economic Performance Go Together? A Review of Micro-level Empirical Evidence from the Past Decade or So," International Review of Environmental and Resource Economics, now publishers, vol. 13(1-2), pages 1-118, April.
    20. Benedikt Downar & Jürgen Ernstberger & Hannes Rettenbacher & Sebastian Schwenen & Aleksandar Zaklan, 2019. "Fighting Climate Change with Disclosure? The Real Effects of Mandatory Greenhouse Gas Emission Disclosure," Discussion Papers of DIW Berlin 1795, DIW Berlin, German Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:71:y:2021:i:c:p:499-515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.