IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v184y2024ics0301421523004792.html
   My bibliography  Save this article

Have consumption-based CO2 emissions in developed countries peaked?

Author

Listed:
  • Wang, Zhen
  • Yan, Haoben
  • Gao, Xue
  • Liang, Qiaomei
  • Mi, Zhifu
  • Liu, Lancui

Abstract

This study innovatively divided consumption-based CO2 emissions of developed countries into domestic and foreign components using an environmentally extended multi-regional input–output model, and revealed their different driving factors using the structural decomposition analysis method. The results showed that the consumption-based emission peaked in 16 developed countries, with 14 countries peaking around 2008. Domestic emissions in all 16 developed countries had peaked, most of which accounted for 40–70% of the total consumption-based emissions. However, the foreign emissions driven by 9 peaking countries still kept increasing. Regarding domestic emissions, the decline of domestic carbon intensity was the main driving factor across 16 peaking countries. In terms of foreign emissions, carbon intensity decline, especially in main medium- and low-income countries, was the dominant factor in the CO2 emissions decrease. Significant improvements in production technology levels of medium-income countries played a key role in weakening the carbon-increasing effects of foreign emissions during the post-peak period. Thus, to further promote global carbon emissions to peak as soon as possible, peaking developed countries should provide more emission reduction funds and technologies to support the decline in carbon intensity and the improvement of production technology in medium- and low-income countries.

Suggested Citation

  • Wang, Zhen & Yan, Haoben & Gao, Xue & Liang, Qiaomei & Mi, Zhifu & Liu, Lancui, 2024. "Have consumption-based CO2 emissions in developed countries peaked?," Energy Policy, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523004792
    DOI: 10.1016/j.enpol.2023.113894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523004792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai & Tang, Yiqi & Zhang, Qifeng & Song, Junnian & Wen, Qi & Sun, Huaping & Ji, Chenyang & Xu, Anqi, 2019. "Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces," Applied Energy, Elsevier, vol. 255(C).
    2. Nathan E. Hultman & Leon Clarke & Carla Frisch & Kevin Kennedy & Haewon McJeon & Tom Cyrs & Pete Hansel & Paul Bodnar & Michelle Manion & Morgan R. Edwards & Ryna Cui & Christina Bowman & Jessie Lund , 2020. "Fusing subnational with national climate action is central to decarbonization: the case of the United States," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    4. Su, Bin & Ang, B.W. & Li, Yingzhu, 2017. "Input-output and structural decomposition analysis of Singapore's carbon emissions," Energy Policy, Elsevier, vol. 105(C), pages 484-492.
    5. Pal, Debdatta & Mitra, Subrata Kumar, 2017. "The environmental Kuznets curve for carbon dioxide in India and China: Growth and pollution at crossroad," Journal of Policy Modeling, Elsevier, vol. 39(2), pages 371-385.
    6. Dror Etzion, 2022. "The proliferation of carbon labels," Nature Climate Change, Nature, vol. 12(9), pages 770-770, September.
    7. Tatsuki Ueda, 2022. "Structural Decomposition Analysis of Japan’s Energy Transitions and Related CO2 Emissions in 2005–2015 Using a Hybrid Input-Output Table," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 763-786, April.
    8. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 93, pages 125-147.
    9. Jocelyn Timperley, 2021. "The broken $100-billion promise of climate finance — and how to fix it," Nature, Nature, vol. 598(7881), pages 400-402, October.
    10. Robert O. Keohane & David G. Victor, 2016. "Cooperation and discord in global climate policy," Nature Climate Change, Nature, vol. 6(6), pages 570-575, June.
    11. Liu, Lan-Cui & Cheng, Lei & Zhao, Lu-Tao & Cao, Ying & Wang, Ce, 2020. "Investigating the significant variation of coal consumption in China in 2002-2017," Energy, Elsevier, vol. 207(C).
    12. Kelly Sims Gallagher & Fang Zhang & Robbie Orvis & Jeffrey Rissman & Qiang Liu, 2019. "Assessing the Policy gaps for achieving China’s climate targets in the Paris Agreement," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    13. Aichele, Rahel & Felbermayr, Gabriel, 2012. "Kyoto and the carbon footprint of nations," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 336-354.
    14. Michael Jakob & Robert Marschinski, 2013. "Interpreting trade-related CO2 emission transfers," Nature Climate Change, Nature, vol. 3(1), pages 19-23, January.
    15. Martin, Ralf & Muûls, Mirabelle & de Preux, Laure B. & Wagner, Ulrich J., 2014. "On the empirical content of carbon leakage criteria in the EU Emissions Trading Scheme," Ecological Economics, Elsevier, vol. 105(C), pages 78-88.
    16. Cui, Jingbo & Liu, Xi & Sun, Yongping & Yu, Haishan, 2020. "Can CDM projects trigger host countries’ innovation in renewable energy? Evidence of firm-level dataset from China," Energy Policy, Elsevier, vol. 139(C).
    17. Kailan Tian & Yu Zhang & Yuze Li & Xi Ming & Shangrong Jiang & Hongbo Duan & Cuihong Yang & Shouyang Wang, 2022. "Regional trade agreement burdens global carbon emissions mitigation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Liangpeng Wu & Qingyuan Zhu, 2021. "Impacts of the carbon emission trading system on China’s carbon emission peak: a new data-driven approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2487-2515, July.
    19. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    20. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    21. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    22. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    23. Kevin Murphy & Grant A. Kirkman & Stephen Seres & Erik Haites, 2015. "Technology transfer in the CDM: an updated analysis," Climate Policy, Taylor & Francis Journals, vol. 15(1), pages 127-145, January.
    24. David Popp, 2011. "International Technology Transfer, Climate Change, and the Clean Development Mechanism," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 131-152, Winter.
    25. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    26. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    27. Kumar, Subhash & Madlener, Reinhard, 2016. "CO2 emission reduction potential assessment using renewable energy in India," Energy, Elsevier, vol. 97(C), pages 273-282.
    28. Araújo, Inácio Fernandes de & Jackson, Randall W. & Ferreira Neto, Amir B. & Perobelli, Fernando S., 2020. "European union membership and CO2 emissions: A structural decomposition analysis," Structural Change and Economic Dynamics, Elsevier, vol. 55(C), pages 190-203.
    29. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    30. Wei, Rui & Zhang, Wencheng & Peng, Shuijun, 2022. "Energy and greenhouse gas footprints of China households during 1995–2019: A global perspective," Energy Policy, Elsevier, vol. 164(C).
    31. Manfred Lenzen & Roberto Schaeffer & Jonas Karstensen & Glen Peters, 2013. "Drivers of change in Brazil’s carbon dioxide emissions," Climatic Change, Springer, vol. 121(4), pages 815-824, December.
    32. Franco, Sainu & Mandla, Venkata Ravibabu & Ram Mohan Rao, K., 2017. "Urbanization, energy consumption and emissions in the Indian context A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 898-907.
    33. Heran Zheng & Yin Long & Richard Wood & Daniel Moran & Zengkai Zhang & Jing Meng & Kuishuang Feng & Edgar Hertwich & Dabo Guan, 2022. "Ageing society in developed countries challenges carbon mitigation," Nature Climate Change, Nature, vol. 12(3), pages 241-248, March.
    34. Rocco, Matteo V. & Golinucci, Nicolò & Ronco, Stefano M. & Colombo, Emanuela, 2020. "Fighting carbon leakage through consumption-based carbon emissions policies: Empirical analysis based on the World Trade Model with Bilateral Trades," Applied Energy, Elsevier, vol. 274(C).
    35. Corinne Le Quéré & Jan Ivar Korsbakken & Charlie Wilson & Jale Tosun & Robbie Andrew & Robert J. Andres & Josep G. Canadell & Andrew Jordan & Glen P. Peters & Detlef P. van Vuuren, 2019. "Drivers of declining CO2 emissions in 18 developed economies," Nature Climate Change, Nature, vol. 9(3), pages 213-217, March.
    36. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    37. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    38. Koch, Nicolas & Basse Mama, Houdou, 2019. "Does the EU Emissions Trading System induce investment leakage? Evidence from German multinational firms," Energy Economics, Elsevier, vol. 81(C), pages 479-492.
    39. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    40. Manfred Lenzen, 2016. "Structural analyses of energy use and carbon emissions -- an overview," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 119-132, June.
    41. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    42. Carsten Gandenberger & Miriam Bodenheimer & Joachim Schleich & Robert Orzanna & Lioba Macht, 2016. "Factors driving international technology transfer: empirical insights from a CDM project survey," Climate Policy, Taylor & Francis Journals, vol. 16(8), pages 1065-1084, November.
    43. Su, Bin & Ang, B.W., 2020. "Demand contributors and driving factors of Singapore’s aggregate carbon intensities," Energy Policy, Elsevier, vol. 146(C).
    44. Kuishuang Feng & Steven J. Davis & Laixiang Sun & Klaus Hubacek, 2015. "Drivers of the US CO2 emissions 1997–2013," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    45. Christoph Böhringer & Carolyn Fischer & Knut Einar Rosendahl & Thomas Fox Rutherford, 2022. "Author Correction: Potential impacts and challenges of border carbon adjustments," Nature Climate Change, Nature, vol. 12(4), pages 408-408, April.
    46. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    47. Anis Chowdhury & Kwame Sundaram Jomo, 2022. "The Climate Finance Conundrum," Development, Palgrave Macmillan;Society for International Deveopment, vol. 65(1), pages 29-41, March.
    48. Jing Meng & Zhifu Mi & Dabo Guan & Jiashuo Li & Shu Tao & Yuan Li & Kuishuang Feng & Junfeng Liu & Zhu Liu & Xuejun Wang & Qiang Zhang & Steven J. Davis, 2018. "The rise of South–South trade and its effect on global CO2 emissions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    49. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    50. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    51. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    52. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    53. Wang, H. & Zhou, P., 2018. "Assessing Global CO2 Emission Inequality From Consumption Perspective: An Index Decomposition Analysis," Ecological Economics, Elsevier, vol. 154(C), pages 257-271.
    54. Jeffery B. Greenblatt & Max Wei, 2016. "Assessment of the climate commitments and additional mitigation policies of the United States," Nature Climate Change, Nature, vol. 6(12), pages 1090-1093, December.
    55. Rutger Hoekstra & Bernhard Michel & Sangwon Suh, 2016. "The emission cost of international sourcing: using structural decomposition analysis to calculate the contribution of international sourcing to CO 2 -emission growth," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 151-167, June.
    56. Christoph Böhringer & Carolyn Fischer & Knut Einar Rosendahl & Thomas Fox Rutherford, 2022. "Potential impacts and challenges of border carbon adjustments," Nature Climate Change, Nature, vol. 12(1), pages 22-29, January.
    57. Heran Zheng & Yin Long & Richard Wood & Daniel Moran & Zengkai Zhang & Jing Meng & Kuishuang Feng & Edgar Hertwich & Dabo Guan, 2022. "Author Correction: Ageing society in developed countries challenges carbon mitigation," Nature Climate Change, Nature, vol. 12(6), pages 593-593, June.
    58. Alexandra Witze, 2022. "Extreme heatwaves: surprising lessons from the record warmth," Nature, Nature, vol. 608(7923), pages 464-465, August.
    59. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    60. Asuka Yamakawa & Glen P. Peters, 2011. "Structural Decomposition Analysis Of Greenhouse Gas Emissions In Norway 1990--2002," Economic Systems Research, Taylor & Francis Journals, vol. 23(3), pages 303-318, December.
    61. Arunima Malik & Darian McBain & Thomas O. Wiedmann & Manfred Lenzen & Joy Murray, 2019. "Advancements in Input‐Output Models and Indicators for Consumption‐Based Accounting," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 300-312, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makarov, Igor & Alataş, Sedat, 2024. "Production- and consumption-based emissions in carbon exporters and importers: A large panel data analysis for the EKC hypothesis," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    2. Meng, Jing & Zhang, Zengkai & Mi, Zhifu & Anadon, Laura Diaz & Zheng, Heran & Zhang, Bo & Shan, Yuli & Guan, Dabo, 2018. "The role of intermediate trade in the change of carbon flows within China," Energy Economics, Elsevier, vol. 76(C), pages 303-312.
    3. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    4. Ninpanit, Panittra & Malik, Arunima & Wakiyama, Takako & Geschke, Arne & Lenzen, Manfred, 2019. "Thailand’s energy-related carbon dioxide emissions from production-based and consumption-based perspectives," Energy Policy, Elsevier, vol. 133(C).
    5. Yang, Yafei & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2022. "Patterns and determinants of carbon emission flows along the Belt and Road from 2005 to 2030," Ecological Economics, Elsevier, vol. 192(C).
    6. Liu, Yajuan & Wang, Yutao & Mi, Zhifu & Ma, Zhongyu, 2018. "Carbon implications of China’s changing economic structure at the city level," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 163-171.
    7. Zhang, Danyang & Wang, Hui & Löschel, Andreas & Zhou, Peng, 2021. "The changing role of global value chains in CO2 emission intensity in 2000–2014," Energy Economics, Elsevier, vol. 93(C).
    8. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    9. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    10. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    11. Duan, Yuwan & Yan, Bingqian, 2021. "Has processing trade made China's exports cleaner? A regional level analysis," Energy Economics, Elsevier, vol. 96(C).
    12. Yan, Junna & Su, Bin, 2020. "What drive the changes in China's energy consumption and intensity during 12th Five-Year Plan period?," Energy Policy, Elsevier, vol. 140(C).
    13. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    14. Jiang, Xuemei & Guan, Dabo, 2017. "The global CO2 emissions growth after international crisis and the role of international trade," Energy Policy, Elsevier, vol. 109(C), pages 734-746.
    15. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    16. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    17. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    18. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    19. Yang, Xue & Su, Bin, 2019. "Impacts of international export on global and regional carbon intensity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Gasim, Anwar A., 2015. "The embodied energy in trade: What role does specialization play?," Energy Policy, Elsevier, vol. 86(C), pages 186-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:184:y:2024:i:c:s0301421523004792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.